Analytical expression for variance of homogeneous-position quantum walk with decoherent position

  • Mostafa Annabestani


We have derived an analytical expression for variance of homogeneous-position decoherent quantum walk with general form of noise on its position, and have shown that, while the quadratic (\(t^2\)) term of variance never changes by position decoherency, the linear term (t) does and always increases the variance. We study the walker with ability to tunnel out to d nearest neighbors as an example and compare our result with former studies. We also show that, although our expression has been derived for asymptotic case, the rapid decay of time-dependent terms causes the expressions to be correct with a good accuracy even after dozens of steps.


Quantum walk Decoherency Variance Coin-position entanglement 



I would sincerely like to thank Maryam Boozarjmehr from the Australian National University, for her accurate reading and editing the manuscript.


  1. 1.
    Abal, G., Siri, R., Romanelli, A., Donangelo, R.: Quantum walk on the line: entanglement and nonlocal initial conditions. Phys. Rev. A 73(4), 042302 (2006). ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Annabestani, M., Abolhasani, M.R., Abal, G.: Asymptotic entanglement in 2D quantum walks. J. Phys. A Math. Theor. 43, 075301 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Annabestani, M., Akhtarshenas, S.J., Abolhassani, M.R.: Decoherence in a one-dimensional quantum walk. Phys. Rev. A 81(3), 032321 (2010). ADSCrossRefGoogle Scholar
  4. 4.
    Annabestani, M., Akhtarshenas, S.J., Abolhassani, M.R.: Incoherent tunneling effects in a one-dimensional quantum walk. J. Phys. A Math. Theor. 49(11), 115301 (2016). ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum random walks with decoherent coins. Phys. Rev. A 67(3), 032304 (2003). ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum to classical transition for random walks. Phys. Rev. Lett. 91(13), 130602 (2003). ADSCrossRefGoogle Scholar
  7. 7.
    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2010). ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Hillery, M., Zheng, H., Feldman, E., Reitzner, D., Bužek, V.: Quantum walks as a probe of structural anomalies in graphs. Phys. Rev. A 85, 062325 (2012). ADSCrossRefGoogle Scholar
  11. 11.
    Kempe, J.: Quantum random walks hit exponentially faster. In: Proceedings of 7th International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM’03), pp. 354–69 (2003)Google Scholar
  12. 12.
    Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17, 1169–1220 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67(4), 042315 (2003). ADSCrossRefGoogle Scholar
  14. 14.
    Kendon, V., Tregenna, B.: Decoherence in discrete quantum walks. In: Decoherence and Entropy in Complex Systems. Lecture Notes in Physics, vol. 633, pp. 253–267. Springer, Berlin (2003)Google Scholar
  15. 15.
    Knight, P., Roldán, E., Sipe, J.: Optical cavity implementations of the quantum walk. Opt. Commun. 227, 147–157 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    López, C.C., Paz, J.P.: Phase-space approach to the study of decoherence in quantum walks. Phys. Rev. A 68, 052305 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Mackay, T.D., Bartlett, T.S., Stephenson, L., Sanders, B.: Quantum walks in higher dimensions. J. Phys. A 35, 2745–2753 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nayak, A., Vishwanath, A.: Quantum walk on a line, DIMACS Technical Report 2000-43 (2001)Google Scholar
  19. 19.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  20. 20.
    Reitzner, D., Nagaj, D., Bužek, V.: Quantum walks. Acta Phys. Slovaca Rev. Tutor. 61(6), 603–726 (2011). ADSGoogle Scholar
  21. 21.
    Romanelli, A., Donangelo, R., Portugal, R., Marquezino, F.D.L.: Thermodynamics of N-dimensional quantum walks. Phys. Rev. A 90(2), 022329 (2014). ADSCrossRefGoogle Scholar
  22. 22.
    Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an nmr quantum-information processor. Phys. Rev. A 72(6), 062317 (2005). ADSCrossRefGoogle Scholar
  23. 23.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003). ADSCrossRefGoogle Scholar
  24. 24.
    Underwood, M.S., Feder, D.L.: Universal quantum computation by discontinuous quantum walk. Phys. Rev. A 82(4), 042304 (2010). ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quant. Inf. Process. (2012). MathSciNetMATHGoogle Scholar
  26. 26.
    Venegas-Andraca, S.E., Bose, S.: Quantum walk-based generation of entanglement between two walkers (2009). arXiv:0901.3946
  27. 27.
    Wang, C., Li, Y., Hao, L.: Optical implementation of quantum random walks using weak cross-Kerr media. Chin. Sci. Bull. 56(20), 2088–2091 (2011). CrossRefGoogle Scholar
  28. 28.
    Watabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, K.: Limiting distribution of decoherent quantum random walks. Phys. Rev. A 77, 062302 (2008)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations