A lower bound of concurrence for multipartite quantum systems

Article

Abstract

We present a lower bound of concurrence for four-partite systems in terms of the concurrence for \(M\, (2\le M\le 3)\) part quantum systems and give an analytical lower bound for \(2\otimes 2\otimes 2\otimes 2\) mixed quantum sates. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. Furthermore, our approach can be generalized to multipartite quantum systems.

Keywords

Quantum entanglement Concurrence Multipartite quantum systems 

Notes

Acknowledgements

This work is supported by NSFC under numbers 11675113 and 11605083.

References

  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(865), 867–942 (2009)ADSMathSciNetMATHGoogle Scholar
  2. 2.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(2245), 2245–2248 (1998)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Qi, X.F., Gao, T., Yan, F.L.: Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems. Quantum Inf. Process. 16(23), 1–8 (2017)MathSciNetMATHGoogle Scholar
  4. 4.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(032307), 1–9 (2000)MathSciNetGoogle Scholar
  5. 5.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64(042315), 1–13 (2001)MathSciNetGoogle Scholar
  6. 6.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3(223), 1–11 (2001)MathSciNetGoogle Scholar
  7. 7.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92(167902), 1–4 (2004)Google Scholar
  8. 8.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95(040504), 1–4 (2005)MathSciNetGoogle Scholar
  9. 9.
    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39(11847), 1–8 (2006)MathSciNetMATHGoogle Scholar
  10. 10.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97(080501), 1–4 (2006)Google Scholar
  11. 11.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75(052320), 1–5 (2007)MathSciNetGoogle Scholar
  12. 12.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76(012334), 1–6 (2007)Google Scholar
  13. 13.
    Zhao, M.J., Zhu, X.N., Fei, S.M.: Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states. Phys. Rev. A 84(062322), 1–5 (2011)Google Scholar
  14. 14.
    Zhu, X.N., Fei, S.M.: Lower bound of concurrence for qubit systems. Quantum Inf. Process. 13, 815–823 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhu, X.N., Zhao, M.J., Fei, S.M.: Lower bound of multipartite concurrence based on subquantum state decomposition. Phys. Rev. A 86(022307), 1–4 (2012)Google Scholar
  16. 16.
    Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93(230501), 1–4 (2004)Google Scholar
  17. 17.
    Li, M., Fei, S.M., Li-Jost, X.Q., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92(062338), 1–6 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mathematics and Statistics ScienceLudong UniversityYantaiChina
  2. 2.College of the ScienceChina University of PetroleumQingdaoChina
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  4. 4.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations