Advertisement

Unary probabilistic and quantum automata on promise problems

  • Aida Gainutdinova
  • Abuzer Yakaryılmaz
Article

Abstract

We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error unary QFAs are more powerful than bounded-error unary PFAs, and, contrary to the binary language case, the computational power of Las-Vegas QFAs and bounded-error PFAs is equivalent to the computational power of deterministic finite automata (DFAs). Then, we present a new family of unary promise problems defined with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.

Keywords

Quantum finite automata Unary promise problems Bounded-error Las-Vegas algorithms Succinctness 

Notes

Acknowledgements

Yakaryılmaz was partially supported by ERC Advanced Grant MQC and CAPES with grant 88881.030338/2013-01. We thank Viliam Geffert for his corrections on the text and the anonymous reviewers for their very helpful comments.

References

  1. 1.
    Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: DCFS, LNCS, vol. 8614, pp. 53–64. Springer (2014)Google Scholar
  2. 2.
    Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ablayev, F.M., Gainutdinova, A.: On the lower bounds for one-way quantum automata. In: MFCS, LNCS, vol. 1893, pp. 132–140. Springer (2000)Google Scholar
  4. 4.
    Ablayev, F.M., Gainutdinova, A.: Complexity of quantum uniform and nonuniform automata. In: DLT, LNCS, vol. 3572, pp. 78–87. Springer (2005)Google Scholar
  5. 5.
    Ablayev, F.M., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching program. Inf. Comput. 203(2), 145–162 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39(1), 165–188 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS’98, pp. 332–341 (1998)Google Scholar
  8. 8.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Comput. Sci. 287(1), 299–311 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Inf. Process. Lett. 112(7), 289–291 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ambainis, A., Yakaryılmaz, A.: Automata from mathematics to applications, chap. Automata and quantum computing (to appear). (arXiv:1507.01988)
  11. 11.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)MATHGoogle Scholar
  12. 12.
    Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theor. Comput. Sci. 262(1–2), 69–81 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of promise problems on classical and quantum automata. In: Computing with New Resources, LNCS, vol. 8808, pp. 161–175. Springer (2014)Google Scholar
  14. 14.
    Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: FOCS’89, pp. 462–467 (1989)Google Scholar
  15. 15.
    Doron, D., Sarid, A., Ta-Shma, A.: On approximating the eigenvalues of stochastic matrices in probabilistic logspace. Comput. Complex. 26(2), 393–420 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Freivalds, R.: Probabilistic two-way machines. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science, pp. 33–45 (1981)Google Scholar
  17. 17.
    Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata on promise problems. In: Developments in Language Theory, Lecture Notes in Computer Science, vol. 9168, pp. 252–263. Springer (2015)Google Scholar
  18. 18.
    Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for total and partial functions. Rus. Math. 11(59), 26–35 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. In: DCFS, LNCS, vol. 8614, pp. 126–137. Springer (2014). ECCC:TR14-136Google Scholar
  20. 20.
    Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. Discret. Math. Theor. Comput. Sci. 17(2), 157–180 (2015)MathSciNetMATHGoogle Scholar
  21. 21.
    Goldreich, O.: On promise problems: a survey. Essays Mem. Shimon Even, LNCS 3895, 254–290 (2006)MathSciNetGoogle Scholar
  22. 22.
    Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance. Int. J. Found. Comput. Sci. 26(3), 381–398 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem. Math. Struct. Comput. Sci. 27(3), 311–331 (2017)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comput. 1(1), 70–85 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kapoutsis, C.A.: Minicomplexity. J. Autom. Lang. Comb. 17(2–4), 205–224 (2012)MathSciNetMATHGoogle Scholar
  26. 26.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton (1960)MATHGoogle Scholar
  27. 27.
    Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: STOC’00, pp. 644–651 (2000)Google Scholar
  28. 28.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS’97, pp. 66–75 (1997)Google Scholar
  29. 29.
    Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. Theor. Inf. Appl. 35(5), 477–490 (2001)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237(1–2), 275–306 (2000)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Digit. Cour. 1, 426–435 (2005)CrossRefGoogle Scholar
  32. 32.
    Nakanishi, M.: Quantum pushdown automata with a garbage tape. In: SOFSEM2015 Proceedings of the forty-first International Conference on Current Trends in Theory and Practice of Computer Science, LNCS, pp. 352–363. Springer (2015). (arXiv:1402.3449)
  33. 33.
    Nakanishi, M., Yakaryılmaz, A.: Classical and quantum counter automata on promise problems. In: Implementation and Application of Automata, Lecture Notes in Computer Science, vol. 9223, pp. 224–237. Springer (2015)Google Scholar
  34. 34.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  35. 35.
    Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality. In: Conference on Implementation and Application of Automata, LNCS, vol. 8587, pp. 318–331. Springer (2014). ArXiv:1404.2761
  36. 36.
    Rotman, J.: An introduction to the theory of groups. number 148 in graduate texts in mathematics (1994)Google Scholar
  37. 37.
    Salomaaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and monographs in computer science. Springer, Berlin (1978)CrossRefGoogle Scholar
  38. 38.
    Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: A modern introduction. In: Computing with New Resources, LNCS, vol. 8808, pp. 208–222. Springer (2014)Google Scholar
  39. 39.
    Shur, A.M., Yakaryılmaz, A.: More on quantum, stochastic, and pseudo stochastic languages with few states. Nat. Comput. 15(1), 129–141 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Watrous, J.: Encyclopedia of Complexity and System Science, chap. Quantum computational complexity. Springer (2009). Also available at arXiv:0804.3401
  41. 41.
    Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)MathSciNetMATHGoogle Scholar
  42. 42.
    Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279(6), 873–892 (2011)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite automata. In: Language and Automata Theory and Applications, LNCS, vol. 8370, pp. 601–612. Springer (2014)Google Scholar
  44. 44.
    Zheng, S., Li, L., Qiu, D., Gruska, J.: Promise problems solved by quantum and classical finite automata. Theor. Comput. Sci. 666, 48–64 (2017)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theore. Comput. Sci. 499, 98–112 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Theoretical Cybernetics, Institute of Computational Mathematics and Information TechnologiesKazan Federal UniversityKazanRussia
  2. 2.Center for Quantum Computer ScienceUniversity of LatviaRīgaLatvia

Personalised recommendations