Advertisement

Resonance fluorescence microscopy via three-dimensional atom localization

  • Pradipta Panchadhyayee
  • Bibhas Kumar Dutta
  • Nityananda Das
  • Prasanta Kumar Mahapatra
Article
  • 148 Downloads

Abstract

A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman–Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

Keywords

Two-level atom Resonance fluorescence Three-dimensional localization Traveling wave coupling field 100% detection probability Momentum distribution 

Notes

Acknowledgements

The authors are thankful to Prof Y. Wu for his valuable comments on the manuscript. BKD likes to acknowledge the tenure of his service in J. K. College, Purulia (W.B.), where he felt motivated to do research in this direction. He also gratefully acknowledges the financial support provided by the R & D section of Sree Chaitanya College (Grant No.: SCC/DJRG/SC-07. Dt. 16.05.2016).

References

  1. 1.
    Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments. Springer Series in Optical Sciences. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013)MATHGoogle Scholar
  3. 3.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Mompart, J., Corbalan, R.: Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7–R24 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Wu, Y., Yang, X.: Electromagnetically induced transparency in \(V\)-, \(\Lambda \)-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Harris, S.E., Yamamoto, H.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Lukin, M.D., Yelin, S.F., Fleischhauer, M., Scully, M.O.: Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60, 3225–3228 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Li, J.H., Yang, X.X.: Enhanced narrow spectral line and double electromagnetically induced two-photon transparency induced by double dark resonances. Eur. Phys. J. D 41, 563–569 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Dutta, B.K., Mahapatra, P.K.: Nonlinear optical effects in a doubly driven four-level atom. Phys. Scr. 75, 345–353 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Wu, Y., Saldana, J., Zhu, Y.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference. Opt. Lett. 29, 2294–2296 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-\(\Lambda \) system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Wu, Y., Yang, X.: Giant Kerr nonlinearities and solitons in a crystal of molecular magnets. Appl. Phys. Lett. 91, 094104 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Anton, M.A., Calderon, O.G., Melle, S., Gonzalo, I., Carreno, F.: All-optical switching and storage in a four-level tripod-type atomic system. Opt. Commun. 268, 146–154 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Mahmoudi, M., Mousavi, S.M., Sahrai, M.: Controlling the optical bistability via interacting dark-state resonances. Eur. Phys. J. D 57, 241–246 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Storey, P., Collett, M., Walls, D.F.: Measurement-induced diffraction and interference of atoms. Phys. Rev. Lett. 68, 472–475 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Thomas, J.E., Wang, L.J.: Precision position measurement of moving atoms. Phys. Rep. 262, 311–366 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Miles, J.A., Simmons, Z.J., Yavuz, D.D.: Subwavelength localization of atomic excitation using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Letokhov, V.: Laser Control of Atoms and Molecules. Oxford University Press, New York (2007)Google Scholar
  23. 23.
    Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Collins, G.P.: Gaseous Bose-Einstein condensate finally observed. Phys. Today 49, 18–21 (1996)Google Scholar
  25. 25.
    Storey, P., Collett, M., Walls, D.F.: Atom-position resolution by quadrature-field measurement. Phys. Rev. A 47, 405–418 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Herkomer, A.M., Schleich, W.P., Zubairy, M.S.: Autler–Townes microscopy on a single atom. J. Mod. Opt. 44, 2507–2513 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Ghafoor, F., Qamar, S., Zubairy, M.S.: Atom localization via phase and amplitude control of the driving field. Phys. Rev. A 65, 043819 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Agarwal, G.S., Kapale, K.T.: Subwavelength atom localization via coherent population trapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3437–3446 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Liu, C., Gong, S.Q., Cheng, D., Fan, X., Xu, Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Cheng, D.-C., Niu, Y.-P., Li, R.-X., Gong, S.Q.: Controllable atom localization via double-dark resonances in a tripod system. J. Opt. Soc. Am. B 23, 2180–2184 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, C., Gong, S.Q., Nakajima, T., Xu, Z.: Phase-sensitive atom localization in a loop \(\Lambda \)-system. J. Mod. Opt. 53, 1791–1802 (2006)ADSCrossRefMATHGoogle Scholar
  36. 36.
    Xu, J., Hu, X.-M.: Localization of a two-level atom via the absorption spectrum. Phys. Lett. A 364, 208–213 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Jin, L., Sun, H., Niu, Y., Gong, S.Q.: Sub-half-wavelength atom localization via two standing-wave fields. J. Phys. B: At. Mol. Opt. Phys. 41, 085508 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Shen, W.B., Hu, X.M., Xu, J.: Sub-half-wavelength atom localization via coherence-controlled resonance fluorescence. J. Phys. B: At. Mol. Opt. Phys. 41, 185502 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Qamar, S., Mehmood, A., Qamar, Sh: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Wang, Z., Jiang, J.: Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system. Phys. Lett. A 374, 4853–4858 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Ghafoor, F.: Subwavelength atom localization via quantum coherence in a three-level atomic system. Phys. Rev. A 84, 063849 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Dutta, B.K., Panchadhyayee, P., Mahapatra, P.K.: Precise localization of a two-level atom by the superposition of two standing-wave fields. J. Opt. Soc. Am. B 29, 3299–3306 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Dutta, B.K., Panchadhyayee, P., Mahapatra, P.K.: Coherent control of localization of a three-level atom by symmetric and asymmetric superpositions of two standing-wave fields. Laser Phys. 23, 045201 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Rahmatullah, Qamar, S.: Precision in single atom localization via Raman-driven coherence-Role of detuning and phase shift. Phys. Lett. A 377(25), 1587–1592 (2013)ADSCrossRefMATHGoogle Scholar
  45. 45.
    Jin, L., Sun, H., Niu, Y., Jin, S., Gong, S.Q.: Two-dimension atom nano-lithograph via atom localization. J. Mod. Opt. 56, 805–810 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Ding, C., Li, J.H., Yang, X., Zhan, Z., Liu, J.-B.: Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system. J. Phys. B: At. Mol. Opt. Phys. 44, 145501 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Ding, C., Li, J.H., Zhan, Z., Yang, X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Wan, R.-G., Kou, J., Jiang, L., Gao, J.-Y.: Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system. J. Opt. Soc. Am. B 28, 10–17 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Wan, R.-G., Kou, J., Jiang, L., Gao, J.-Y.: Two-dimensional atom localization via quantum interference in a coherently driven inverted-Y system. Opt. Commun. 284, 985–990 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28, 622–628 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Li, J.H., Yu, R., Liu, M., Ding, C., Yang, X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Zhang, H.T., Wang, H., Wang, Z.: Two-dimensional atom localization via two standing-wave fields in a four-level atomic system. Phys. Scr. 84, 065402 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Wan, R.-G., Zhang, T.-Y.: Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. Opt. Express 19, 25823–25832 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Ding, C., Li, J.H., Yu, R., Hao, X., Wu, Y.: High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system. Opt. Express 20, 7870–7885 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. 327, 1132–1145 (2012)ADSCrossRefMATHGoogle Scholar
  57. 57.
    Rahmatullah, Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A. 88(1), 013846 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Wu, J.C., Ai, B.Q.: Two-dimensional sub-wavelength atom localization in an electromagnetically induced transparency atomic system. Eur. Phys. Lett. 107, 14002 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    Shui, T., Wang, Z., Cao, Z., Yu, B.: Two-dimensional sub-half-wavelength atom localization via AutlerTownes microscopy. Laser Phys. 24, 055202 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Wahab, A., Rahmatullah, Qamar, S.: Resonance fluorescence based two- and three- dimensional atom localization. J. Mod. Opt. 63(11), 1059–1067 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Gordeev, M.Y., Efremova, E.A., Rozhdestvensky, Y.V.: Atom localization with double-cascade configuration. J. Phys. B: At. Mol. Opt. Phys. 49, 065001 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Hua, S., Jiang, X.: Two-dimensional localization of an atom with sub-half-wavelength spatial resolution via coherently controlled spontaneous emission. Eur. Phys. Lett. 116, 53001 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    Zhu, Z., Yang, W.-X., Chen, A.-X., Liu, S., Lee, R.-K.: Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems. J. Opt. Soc. Am. B 32, 1070–1077 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    Raheli, A., Sahrai, M., Hamedi, H.R.: Atom position measurement in a four-level Lambda-shaped scheme with twofold lower-levels. Opt. Quantum Electron. 47, 3221–3236 (2015)CrossRefGoogle Scholar
  65. 65.
    Ivanov, V.S., Rozhdestvensky, Y.V., Suominen, K.A.: Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90, 063802 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    Wang, Z., Yu, B.: Precision localization of single atom via spontaneous emission in three dimensions. Quant. Inf. Process. 14, 4067–4076 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Wang, Z., Cao, D., Yu, B.: Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system. Appl. Opt. 55, 3582–3588 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    Hamedi, H.R., Mehmannavaz, M.R.: Phase control of three-dimensional atom localization in a four-level atomic system in Lambda configuration. J. Opt. Soc. Am. B 33, 41–45 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    Zhu, Z., Chen, A.-X., Liu, S., Yang, W.-X.: High-precision three-dimensional atom localization via three-wave mixing in V-type three-level atoms. Phys. Lett. A 33, 3956–3961 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    Elnabi, S.A., Osman, K.I.: Atom localization in a Doppler broadened medium via two standing-wave fields. Opt. Commun. 359, 1–8 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    Wang, Z., Yu, B.: Efficient three-dimensional atom localization via probe absorption. J. Opt. Soc. Am. B 32, 1281–1286 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    Wang, Z., Yu, B.: High-precision three-dimensional atom localization via spontaneous emission in a four-level atomic system. Laser Phys. Lett. 13, 065203 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    Zhu, Z., Yang, W.X., Xie, X.T., Liu, X.S., Liu, S., Lee, R.K.: Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A 94(1), 013826 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    Zhu, Z., Yang, W.X., Chen, A.X., Liu, S., Lee, R.K.: Dressed-state analysis of efficient three-dimensional atom localization in a ladder-type three-level atomic system. Laser Phys. 26, 075203 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    Yang, L., Cao, D., Wang, Y., Wang, Z., Yu, B.: Three-dimensional sub-half-wavelength atom localization via interacting double-dark resonances. Laser Phys. 26(11), 115501 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    Wang, Z., Song, F., Chen, J., Yu, B.: Coherent control of three-dimensional atom localization based on different coupled mechanisms. Quantum Inf. Process 16, 129 (2017)ADSCrossRefMATHGoogle Scholar
  77. 77.
    Mao, Y., Wu, J.: High-precision three-dimensional atom localization in a microwave-driven atomic system. J. Opt. Soc. Am. B 34, 1070 (2017)ADSCrossRefGoogle Scholar
  78. 78.
    Westbrook, C.I., Jurczak, C., Birkl, G., Desruelle, B., Phillips, W.D., Aspect, A.: A study of atom localization in an optical lattice by analysis of the scattered light. J. Mod. Opt. 44, 1837–1851 (1997)ADSCrossRefGoogle Scholar
  79. 79.
    Mollow, B.R.: Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217–2222 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Pradipta Panchadhyayee
    • 1
  • Bibhas Kumar Dutta
    • 2
  • Nityananda Das
    • 3
  • Prasanta Kumar Mahapatra
    • 4
  1. 1.Department of Physics (UG & PG)Prabhat Kumar College, ContaiPurba MedinipurIndia
  2. 2.Department of PhysicsSree Chaitanya CollegeHabraIndia
  3. 3.Department of PhysicsJ. K. CollegePuruliaIndia
  4. 4.ITER, Siksha ’O’ Anusandhan UniversityBhubaneswarIndia

Personalised recommendations