Improving the capacity of quantum dense coding by weak measurement and reversal measurement

Article
  • 66 Downloads

Abstract

A protocol of quantum dense coding protection of two qubits is proposed in amplitude damping (AD) channel using weak measurement and reversal measurement. It is found that the capacity of quantum dense coding under the weak measurement and reversal measurement is always greater than that without weak measurement and reversal measurement. When the protocol is applied, for the AD channels with different damping coefficients, the result reflects that quantum entanglement can be protected and quantum dense coding becomes successful.

Keywords

Weak measurement Reversal measurement Quantum dense coding 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11574022).

References

  1. 1.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Kim, Y.H., Kulik, S.P., Rubin, M.H., Shih, Y.: Dispersion-independent high-visibility quantum interference in ultrafast parametric down-conversion. Phys. Rev. Lett. 86, 4710 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Masanes, L., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 22303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhang, G.F.: Sudden death of entanglement of a quantum model. Chin. Phys. 16, 1855 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316(5824), 579–82 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, G.F., Fan, H., Ji, A.L., Liu, W.M.: Dynamics of geometric discord and measurement-induced nonlocality at finite temperature. Eur. Phys. J. D 66, 34 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Huang, J.: The protection of qudit states by weak measurement. Acta Phys. Sin. 66, 010301 (2017)Google Scholar
  13. 13.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Liao, X.-P., Fang, M.-F., Fang, J.-S., Zhu, Q.-Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 20304 (2014)CrossRefGoogle Scholar
  18. 18.
    Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Shadman, Z., Kampermann, H., Macchiavello, C., Bruß, D.: Optimal super dense coding over noisy quantum channels. New J. Phys. 12, 073042 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Das, T., Prabhu, R., Sen, A., Sen, U.: Multipartite dense coding versus quantum correlation: noise inverts relative capability of information transfer. Phys. Rev. A 90, 022319 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, G.F.: Effects of anisotropy on optimal dense coding. Phys. Scr. 79, 015001 (2009)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Hiroshima, T.: Optimal dense coding with mixed state entanglement. J. Phys. A Math. Gen. 34, 6907 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Xing, X.: Protecting qubit-qutrit entanglement from amplitude damping decoherence via weak measurement and reversal. Phys. Scr. 89, 065102 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina

Personalised recommendations