Estimations of the errors between the evolving states generated by two Hamiltonians with the same initial state



Time evolution of a quantum system is described by Schrödinger equation with initial pure state, or von Neumann equation with initial mixed state. In this paper, we estimate the error between the evolving states generated by two Hamiltonians with the same initial pure state. Secondly, according to the method of operator–vector correspondence, we give a relation of the Schrödinger equation and von Neumann equation and then estimate the error between the evolving states generated by two Hamiltonians with the same initial mixed state.


Schrödinger equation von Neumann equation Error estimation Time evolution 



This work was supported by the National Natural Science Foundation of China (Nos. 11771009, 11601300, 11571213) and the Fundamental Research Funds for the Central Universities (GK201703093).


  1. 1.
    Yajima, K.: Existence of solutions for Schrodinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Peskin, U., Moiseyev, N.: The solution of the time-dependent Schrodinger equation by the \((t, t^{^{\prime }})\) method: theory, computational algorithm and applications. J. Chem. Phys. 99, 4590–4596 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Bennant, M., Koslofft, R., Tal-Ezert, H.: Solution of the time-dependent Liouville-von Neumann equation: dissipative evolution. J. Phys. A Math. Gen. 25, 1283–1307 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Schiff, L.I.: Quantum Mechanics. McGraw-Hill Book Co., Inc, New York (1949)MATHGoogle Scholar
  5. 5.
    Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435–439 (1950)ADSCrossRefGoogle Scholar
  6. 6.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106v1
  7. 7.
    Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zhang, D.J., Tong, D.M., Lu, Y., Long, G.L.: An alternative adiabatic quantum algorithm for the Hamiltonian cycle problem. Commun. Theor. Phys. 63, 554–558 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    van Dam, W., Moscay, M., Vaziraniz, U.: How powerful is Adiabatic quantum computation?. In: Proceedings 2001 IEEE International Conference on Cluster Computing, pp. 279–287 (2002)Google Scholar
  10. 10.
    Ambainis, A., Regev, O.: An elementary proof of the quantum adiabatic theorem (2004). arXiv:quant-ph/0411152v2
  11. 11.
    Tong, D.M.: Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104, 120401 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Wu, J.D., Zhao, M.S., Chen, J.L., Zhang, Y.D.: Adiabatic approximation condition (2007). arXiv:quant-ph/0706.0264
  13. 13.
    Cao, H.X., Guo, Z.H., Chen, Z.L., Wang, W.H.: Quantitative sufficient conditions for adiabatic approximation. Sci. China Phys. Mech. Astron. 56, 1401–1407 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, W.H., Guo, Z.H., Cao, H.X.: An upper bound for the adiabatic approximation error. Sci. China Phys. Mech. Astron. 57, 218–224 (2014)CrossRefGoogle Scholar
  15. 15.
    Yu, B.M., Cao, H.X., Guo, Z.H., Wang, W.H.: Computable upper bounds for the adiabatic approximation errors. Sci. China Phys. Mech. Astron. 57, 2031–2038 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, W.H., Cao, H.X., Lu, L., Yu, B.M.: An upper bound for the generalized adiabatic approximation error with a superposition initial state. Sci. China Phys. Mech. Astron. 58, 030001 (2015)Google Scholar
  17. 17.
    Wang, Z.Y., Plenio, M.B.: Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields. Phys. Rev. A 93, 052107 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, Q.: Quantum adiabatic evolution with energy degeneracy levels. Phys. Rev. A 93, 012116 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Sarandy, M.S., Lidar, D.A.: Adiabatic approximation in open quantum systems. Phys. Rev. A 71, 012331 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Arenz, C., Russell, B., Burgarth, D., Rabitz, H.: The roles of drift and control field constraints upon quantum control speed limits (2017). arXiv:1704.06289
  21. 21.
    Watrous, J.: Theory of quantum information. University of Waterloo, Ontario (2011)Google Scholar
  22. 22.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (2006)MATHGoogle Scholar
  23. 23.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, London (2000)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Ethnic EducationShaanxi Normal UniversityXi’anChina
  2. 2.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations