Advertisement

Entanglement generation and entanglement concentration of two-photon four-dimensional spatial modes partially entangled Dicke state

Article
  • 174 Downloads

Abstract

Two-photon four-dimensional spatial modes partially entangled Dicke state can be compactly generated from six concurrent spontaneous parametric down-conversion processes by cascading poling domain structures in 5% MgO-doped poled lithium niobate bulk crystal. Entanglement concentration of the two-photon four-dimensional spatial modes partially entangled Dicke state can be realized by using quantum nondestructive detection of nonlinear Kerr medium, optical beam splitter, and quantum gate operation.

Keywords

Optical superlattice Entangled Dicke state Entanglement concentration 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11604115).

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267, 50–57 (1992)CrossRefGoogle Scholar
  3. 3.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Entanglement demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, H., Jin, X.M., Yang, J., Dai, H.N., Yang, S.J., Zhao, T.M., Rui, J., He, Y., Jiang, X., Yang, F., Pan, G.S., Yuan, Z.S., Deng, Y., Chen, Z.B., Bao, X.H., Chen, S., Zhao, B., Pan, J.W.: Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics 5, 628–632 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23(7), 9284–9294 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067–1070 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547–6561 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process 15(5), 2033–2052 (2016)ADSMathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., Enk, S.J., Kimble, H.J.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324(5928), 764–768 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Lougovski, P., Enk, S.J., Choi, K.S., Papp, S.B., Deng, H., Kimble, H.J.: Verifying multipartite mode entanglement of W states. New J. Phys. 11, 063029 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Xu, H.B., Du, K., Qiao, C.F.: Proposal for a new scheme for producing a two-photon, high dimensional hyperentangled state. J. Mod. Opt. 59, 1265 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Shi, J., Xu, P., Zhong, M.L., Gong, Y.X., Bai, Y.F., Yu, W.J., Li, Q.W., Jin, H., Zhu, S.N.: Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal. Opt. Express 21(7), 7875–7881 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Jin, H., Xu, P., Luo, X.W., Leng, H.Y., Gong, Y.X., Yu, W.J., Zhong, M.L., Zhao, G., Zhu, S.N.: Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal. Phys. Rev. Lett. 111(2), 023603 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Yu, X.Q., Xu, P., Xie, Z.D., Wang, J.F., Leng, H.Y., Zhao, J.S., Zhu, S.N., Ming, N.B.: Transforming spatial entanglement using a domain-engineering technique. Phys. Rev. Lett. 101, 233601 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Leng, H.Y., Yu, X.Q., Gong, Y.X., Xu, P., Xie, Z.D., Jin, H., Zhang, C., Zhu, S.N.: On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun. 2, 429 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Xu, P., Zhu, S.N.: Review article: quasi-phase-matching engineering of entangled photons. AIP Adv. 2, 041401 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Gong, Y.X., Xu, P., Shi, J., Chen, L., Yu, X.Q., Xue, P., Zhu, S.N.: Generation of polarization-entangled photon pairs via concurrent spontaneous parametric down conversions in a single \(\chi \)(2) nonlinear photonic crystal. Opt. Lett. 37(21), 4374–4376 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Thyagarajan, K., Lugani, J., Ghosh, S., Sinha, K., Martin, A., Ostrowsky, D.B., Alibart, O., Tanzilli, S.: Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides. Phys. Rev. A 80, 052321 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954)ADSMATHCrossRefGoogle Scholar
  32. 32.
    Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Zhao, Y.Y., Wu, Y.C., Xiang, G.Y., Li, C.F., Guo, G.C.: Experimental violation of the local realism for four-qubit Dicke state. Opt. Express 23(23), 30491–30496 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Chakraborty, K., Choi, B.S., Maitra, A., Maitra, S.: Efficient quantum algorithms to construct arbitrary Dicke states. Quantum Inf. Process 13, 2049 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Mlynek, J.A., Abdumalikov Jr., A.A., Fink, J.M., Steffen, L., Baur, M., Lang, C., van Loo, A.F., Wallraff, A.: Demonstrating W-type entanglement of Dicke states in resonant cavity quantum electrodynamics. Phys. Rev. A 86, 053838 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Chuang, I.L., Yamamoto, Y.: Quantum bit regeneration. Phys. Rev. Lett. 76, 4281 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Howell, John C., Yeazell, John A.: Nondestructive single-photon trigger. Phys. Rev. A. 62, 032311 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Gayer, O., Sacks, Z., Galum, E., Arie, A.: Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO\(_{3}\). Appl. Phys. B 91, 343 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Liu, Z.W., Du, Y., Liao, J., Zhu, S.N., Zhu, Y.Y., Qin, Y.Q., Wang, H.T., He, J.L., Zhang, C., Ming, N.B.: Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction. J. Opt. Soc. Am. B 19, 1676 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Shi, J., Yun, S.J., Bai, Y.F., Xu, P., Zhu, S.N.: Compact generation of palarization-frequency hyperentangled photon pairs by using quasi-phase-matched lithium niobate. Opt. Commun. 285, 5549 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Berger, V.: Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Ralph, T.C., Resch, K.J., Gilchrist, A.: Efficient Toffoli gates using qudits. Phys. Rev. A. 75, 022313 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Mičuda, M., Sedlák, M., Straka, I., Miková, M., Dušek, M., Ježek, M., Fiurášek, J.: Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Sun, Q., Ye, L.: Implementing Toffoli gate via weak cross-Kerr nonlinearity and classical feedback. Mod. Phys. Lett. B 29, 1550032 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaianChina

Personalised recommendations