Advertisement

A one-way quantum amplifier for long-distance quantum communication

Article
  • 6.6k Downloads

Abstract

In this paper, a model for single photon amplification based on cluster-state quantum computation is proposed. A rescaling of the probability amplitudes of a deteriorated qubit in favor of the one-photon component will define the amplifier’s gain. Unlike the heralded quantum amplifiers, the probabilistic success of the whole process will not depend on the successful detection of a heralding signal. Instead, the whole procedure will rely upon a single-qubit measurement, which is simpler compared to any two-qubit interaction gate in the heralded quantum amplifiers. The proposed model can be used as a qubit protector against propagation losses in long-distance quantum communication networks.

Keywords

Quantum communication Linear optics Noiseless linear amplifiers Cluster computation Entanglement 

References

  1. 1.
    Preskill, J.: Physics 219. Lecture notes. http://www.theory.caltech.edu/people/preskill/ph229/
  2. 2.
    Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: Lvovsky, A. (eds.) Quantum Communication Measurement and Computing Proceedings of 9th International Conference, pp. 155–160 (2009)Google Scholar
  5. 5.
    Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Jeffers, J.: Nondeterministic amplifier for two-photon superpositions. Phys. Rev. A 82, 063828 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Meyer-Scott, E., Bula, M., Bartkiewicz, K., Ĉernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSMATHCrossRefGoogle Scholar
  9. 9.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Browne, D.E., Briegel, H. J.: One-way quantum computation—a tutorial introduction. arXiv:quant-ph/0603226
  11. 11.
    Nielsen, M. A.: Cluster-state quantum computation. arXiv:quant-ph/0504097
  12. 12.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, 1st edn. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  13. 13.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zbinden, H., Bechmann-Pasquinucci, H., Gisin, N., Ribordy, G.: Quantum cryptography. Appl. Phys. B 67, 743748 (1998)CrossRefGoogle Scholar
  17. 17.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Azuma, K., Tamaki, K., Lo, H.-K.: All-photonic quantum repeaters. Nat. Commun. 6, Article number: 6787 (2015)Google Scholar
  23. 23.
    Gerry, C., Knight, P.: Introductory Quantum Optics, Chapter 6, 1st edn. Cambridge University Press, Cambridge (2005)Google Scholar
  24. 24.
    Barnum, H., Nielsen, M.A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Gupta, V.P., Mandayam, P., Sunder, V.S.: The Functional Analysis of Quantum Information Theory. Springer, Berlin (2015)MATHCrossRefGoogle Scholar
  26. 26.
    Christensen, O.: Functions, Spaces, and Expansions. Birkhuser Mathematics, Basel (2010)MATHCrossRefGoogle Scholar
  27. 27.
    Desurvire, E.: A three-dimensional quantum vacuum-noise/signal beamsplitter model for nonideal linear optical amplifiers. Opt. Fiber Technol. 5(1), 81 (1999)ADSGoogle Scholar
  28. 28.
    Ketterle, W.: 8.422 Atomic and Optical Physics II, Spring 2013 (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu/courses/physics/8-422-atomic-and-optical-physics-ii-spring-2013/
  29. 29.
    Lambropoulos, P., Petrosyan, D.: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin (2007)Google Scholar
  30. 30.
    Agarwal, G.S.: Quantum Optics, Chapter 10, 1st edn. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  31. 31.
    Deutsch, I.H.: Physics 581 Quantum Optics II. http://info.phys.unm.edu/~ideutsch/Classes/Phys581F16/index.htm
  32. 32.
    Eastin, B., Flammia, S.T.: Q-circuit tutorial. arXiv:quant-ph/0406003v2 (This diagram was plotted using this tool)
  33. 33.
    Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010)MATHCrossRefGoogle Scholar
  34. 34.
    Gottesman, D.: The Heisenberg Representation of Quantum Computers. arXiv:quant-ph/9807006
  35. 35.
    Gottesman, D.: Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052
  36. 36.
    Korzh, B., et al.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163168 (2015)CrossRefGoogle Scholar
  37. 37.
    Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Gottesman, D.: Quantum Error Correction QECC2007. Course http://perimeterinstitute.ca/personal/dgottesman/QECC2007/
  39. 39.
    Vazirani, U.: CS294-2: quantum computation. Lecture notes. https://people.eecs.berkeley.edu/~vazirani/s09quantum.html
  40. 40.
    Chao-Yang, L., Zhou, X.-Q., Ghne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebe, A., Yang, T., Pan, J.-W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)CrossRefGoogle Scholar
  41. 41.
    Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic Quantum Encoder for Single-Photon Qubits. arXiv:quant-ph/0312097
  43. 43.
    Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringAin-Shams UniversityCairoEgypt

Personalised recommendations