Quantum coordinated multi-point communication based on entanglement swapping

Article
  • 93 Downloads

Abstract

In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten–Podolsky–Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.

Keywords

Quantum networks Coordinated communication Multi-point communication Multi-party entanglement swapping 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 61571024) and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 175–179 (1984)MathSciNetMATHGoogle Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 235–238 (2004)CrossRefGoogle Scholar
  4. 4.
    Bregman, I., Aharonov, D.: Simple and secure quantum key distribution with biphotons. Phys. Rev. A 77(5), 2533–2536 (2007)Google Scholar
  5. 5.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 203–209 (2002)CrossRefGoogle Scholar
  6. 6.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle green-horne-zeilinger state. Opt. Commun. 253(1–3), 15–20 (2006)ADSGoogle Scholar
  7. 7.
    Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)MATHCrossRefGoogle Scholar
  8. 8.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., Mayer, H.P., Thiele, L., Jungnickel, V.: Coordinated multipoint: concepts, performance, and field trial results. IEEE Commun. Mag. 49(2), 102–111 (2011)CrossRefGoogle Scholar
  10. 10.
    Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum secret sharing based on multi-particle entanglement. Phys. Rev. A 76(10), 036,302 (2007)Google Scholar
  11. 11.
    Chou, Y.H., Fan, R.K., Chen, S.M., Chen, C.Y., Chao, H.C.: Enhanced multiparty quantum secret sharing of classical messages based on entanglement swapping. IET Inf. Secur. 6(2), 269–274 (2010)Google Scholar
  12. 12.
    Alshowkan, M., Elleithy, K.: Secret key sharing using entanglement swapping and remote preparation of quantum state. In: IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–6 (2014)Google Scholar
  13. 13.
    Liu, W., Chen, H., Liu, Z., Hu, W.: Authenticated deterministic secure quantum communication based on entanglement swapping. In: Second International Conference on Genetic and Evolutionary Computing (WGEC ’08), pp. 471–475 (2008)Google Scholar
  14. 14.
    Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 3-dimensional bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Shang, T., Zhao, X.J., Wang, C., Liu, J.W.: Quantum homomorphic signature. Quantum Inf. Process. 14(1), 393–410 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cheng, S.T., Wang, C.Y., Tao, M.H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Areas Commun. 23(7), 1424–1432 (2005)CrossRefGoogle Scholar
  18. 18.
    Li, J.S., Yang, C.F.: Quantum communication in distributed wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS 2009), pp. 1024–1029 (2009)Google Scholar
  19. 19.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 3283–3286 (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina

Personalised recommendations