Skip to main content
Log in

Quantum coordinated multi-point communication based on entanglement swapping

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten–Podolsky–Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 175–179 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 235–238 (2004)

    Article  Google Scholar 

  4. Bregman, I., Aharonov, D.: Simple and secure quantum key distribution with biphotons. Phys. Rev. A 77(5), 2533–2536 (2007)

    Google Scholar 

  5. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 203–209 (2002)

    Article  Google Scholar 

  6. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle green-horne-zeilinger state. Opt. Commun. 253(1–3), 15–20 (2006)

    ADS  Google Scholar 

  7. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)

    Article  MATH  Google Scholar 

  8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., Mayer, H.P., Thiele, L., Jungnickel, V.: Coordinated multipoint: concepts, performance, and field trial results. IEEE Commun. Mag. 49(2), 102–111 (2011)

    Article  Google Scholar 

  10. Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum secret sharing based on multi-particle entanglement. Phys. Rev. A 76(10), 036,302 (2007)

    Google Scholar 

  11. Chou, Y.H., Fan, R.K., Chen, S.M., Chen, C.Y., Chao, H.C.: Enhanced multiparty quantum secret sharing of classical messages based on entanglement swapping. IET Inf. Secur. 6(2), 269–274 (2010)

    Google Scholar 

  12. Alshowkan, M., Elleithy, K.: Secret key sharing using entanglement swapping and remote preparation of quantum state. In: IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–6 (2014)

  13. Liu, W., Chen, H., Liu, Z., Hu, W.: Authenticated deterministic secure quantum communication based on entanglement swapping. In: Second International Conference on Genetic and Evolutionary Computing (WGEC ’08), pp. 471–475 (2008)

  14. Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 3-dimensional bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shang, T., Zhao, X.J., Wang, C., Liu, J.W.: Quantum homomorphic signature. Quantum Inf. Process. 14(1), 393–410 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cheng, S.T., Wang, C.Y., Tao, M.H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Areas Commun. 23(7), 1424–1432 (2005)

    Article  Google Scholar 

  18. Li, J.S., Yang, C.F.: Quantum communication in distributed wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS 2009), pp. 1024–1029 (2009)

  19. Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 3283–3286 (2002)

    Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 61571024) and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Shang, T. & Liu, Jw. Quantum coordinated multi-point communication based on entanglement swapping. Quantum Inf Process 16, 116 (2017). https://doi.org/10.1007/s11128-017-1558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1558-2

Keywords

Navigation