New passive decoy-state quantum key distribution with thermal distributed parametric down-conversion source

  • Jie Wei
  • Chun-Hui Zhang
  • Qin Wang


We present a new scheme on implementing the passive quantum key distribution with thermal distributed parametric down-conversion source. In this scheme, only one-intensity decoy state is employed, but we can achieve very precise estimation on the single-photon-pulse contribution by utilizing those built-in decoy states. Moreover, we compare the new scheme with other practical methods, i.e., the standard three-intensity decoy-state BB84 protocol using either weak coherent states or parametric down-conversion source. Through numerical simulations, we demonstrate that our new scheme can drastically improve both the secure transmission distance and the key generation rate.


Quantum key distribution Decoy state Parametric down-conversion source Weak coherent state 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos. 11274178, 61475197, and 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grant No. YX002001.


  1. 1.
    Ekert, A.K.: Quantum cryptography based on Bell\(^{^{\prime }}\)s theorem. Phys. Rev. Lett. 67, 611 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)Google Scholar
  4. 4.
    Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A. 51, 1863 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, X.-B.: Beating the Photon-Number-Splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Lo, H.K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A. 77, 042311 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, X.-B., Yang, L., Peng, C.-Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11, 075006 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, Q., Wang, X.-B., Guo, G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A. 75, 012312 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.-F., Guo, G.-C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-Poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, Q., Karlsson, A.: Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the Poisson distribution. Phys. Rev. A. 76, 014309 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Q., Wang, X.-B., Björk, G., Karlsson, A.: Improved practical decoy state method in quantum key distribution with parametric downconversion source. Europhys. Lett. 79, 40001 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ma, X.-F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A. 72, 012326 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A. 72, 012322 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Adachi, Y., Yamamoto, Y., Masato, K., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Curty, M., Ma, X.-F., Qi, B., Moroder, T.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A. 81, 022310 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Zambra, G., Andreoni, A., Bondani, M., Gramegna, M., Genovese, M., Brida, G., Rossi, A., Paris, M.G.: Experimental reconstruction of photon statistics without photon counting. Phys. Rev. Lett. 95, 063602 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Chekhova, M., Kulik, S.: Physical Foundations of Quantum Electronics. World Scientific Publishing Company, Singapore (2011)Google Scholar
  21. 21.
    Brida, G., Degiovanni, I.-P., Genovese, M., Piacentini, F., Traina, P., Della Frera, A., Tosi, A., Bahgat Shehata, A., Scarcella, C., Gulinatti, A., Ghioni, M., Polyakov, S.-V., Migdall, A., Giudice, A.: An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101, 221112 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Ngah, L.A., Alibart, O., Labonté, L., D’Auria, V., Tanzilli, S.: Ultra-fast heralded single photon source based on telecom technology. Laser Photonics Rev. 9(2), L1 (2015)CrossRefGoogle Scholar
  23. 23.
    Yurke, B., Potasek, M.: Obtainment of thermal noise from a pure quantum state. Phys. Rev. A. 36, 3464 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A. 61, 052304 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A. 89, 052325 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, C.-H., Luo, S.-L., Guo, G.-C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A. 92, 022332 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Signal Processing TransmissionNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Key Lab of Broadband Wireless Communication and Sensor Network TechnologyNanjing University of Posts and Telecommunications, Ministry of EducationNanjingChina
  3. 3.Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations