Teleportation-based continuous variable quantum cryptography

  • F. S. Luiz
  • Gustavo Rigolin


We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.


Quantum communication Quantum cryptography Quantum teleportation 



FSL and GR thank CNPq (Brazilian National Council for Scientific and Technological Development) for funding and GR thanks CNPq/FAPESP (State of São Paulo Research Foundation) for financial support through the National Institute of Science and Technology for Quantum Information.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, p. 175 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gisin, N., Ribordy, G., Tittle, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(R) (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Reid, M.D.: Quantum cryptography with a predetermined key, using continuous-variable Einstein–Podolsky–Rosen correlations. Phys. Rev. A 62, 062308 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Cerf, N.J., Lévy, M., Van Assche, G.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63, 052311 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Grosshans, F., Grangier, Ph: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Silberhorn, Ch., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys. Rev. Lett. 89, 167901 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Lorenz, S., Korolkova, N., Leuchs, G.: Continuous-variable quantum key distribution using polarization encoding and post selection. Appl. Phys. B 79, 273 (2004)CrossRefGoogle Scholar
  14. 14.
    Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, Ph: Quantum key distribution using gaussian-modulated coherent states. Nature (London) 421, 238 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Legré, M., Zbinden, H., Gisin, N.: Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration. Quantum Inf. Comput. 6, 326 (2006)MATHGoogle Scholar
  16. 16.
    Lodewyck, J., Debuisschert, T., Tualle-Brouri, R., Grangier, Ph: Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys. Rev. A 72, 050303(R) (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, Ph: Quantum key distribution over 25km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, Ph, Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Hirano, T., Yamanaka, H., Ashikaga, M., Konishi, T., Namiki, R.: Quantum cryptography using pulsed homodyne detection. Phys. Rev. A 68, 042331 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Namiki, R., Hirano, T.: Security of quantum cryptography using balanced homodyne detection. Phys. Rev. A 67, 022308 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Namiki, R., Hirano, T.: Practical limitation for continuous-variable quantum cryptography using coherent states. Phys. Rev. Lett. 92, 117901 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Namiki, R., Hirano, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys. Rev. A 74, 032302 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Weedbrook, Ch., Lance, A.M., Bowen, W.P., Symul, Th, Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Lance, A.M., Symul, Th, Sharma, V., Weedbrook, Ch., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Heid, M., Lütkenhaus, N.: Efficiency of coherent-state quantum cryptography in the presence of loss: influence of realistic error correction. Phys. Rev. A 73, 052316 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Heid, M., Lütkenhaus, N.: Security of coherent-state quantum cryptography in the presence of Gaussian noise. Phys. Rev. A 76, 022313 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4, 726 (2008)CrossRefGoogle Scholar
  28. 28.
    García-Patrón, R., Cerf, N.J.: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102, 130501 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Leverrier, A., Grangier, Ph: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Leverrier, A., Grangier, Ph: Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 83, 042312 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Sych, D., Leuchs, G.: Coherent state quantum key distribution with multi letter phase-shift keying. New J. Phys. 12, 053019 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012). doi: 10.1038/ncomms2097 ADSCrossRefGoogle Scholar
  33. 33.
    Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, Ch., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, ChS, Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Li, Z., Zhang, Y.-C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Borelli, L.F.M., Aguiar, L.S., Roversi, J.A., Vidiella-Barranco, A.: Quantum key distribution using continuous-variable non-Gaussian states. Quantum Inf. Process. 15, 893 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Weedbrook, Ch., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Grosshans, F., Cerf, N.J.: Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 92, 047905 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Iblisdir, S., Van Assche, G., Cerf, N.J.: Security of quantum key distribution with coherent states and homodyne detection. Phys. Rev. Lett. 93, 170502 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Zhao, Y.-B., Heid, M., Rigas, J., Lütkenhaus, N.: Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A 79, 012307 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Weedbrook, Ch., Pirandola, S., Lloyd, S., Ralph, T.C.: Quantum cryptography approaching the classical limit. Phys. Rev. Lett. 105, 110501 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87, 062313 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Huang, J.-Z., Kunz-Jacques, S., Jouguet, P., Weedbrook, Ch., Yin, Z.-Q., Wang, Sh, Chen, W., Guo, G.-C., Han, Z.-F.: Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A 89, 032304 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    Yoshino, K.-I., Aoki, T., Furusawa, A.: Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett. 90, 041111 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Lee, N., Benichi, H., Takeno, Y., Takeda, Sh, Webb, J., Huntington, E., Furusawa, A.: Teleportation of nonclassical wave packets of light. Science 332, 330 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Gordon, G., Rigolin, G.: Quantum cryptography using partially entangled states. Opt. Commun. 283, 184 (2010)Google Scholar
  57. 57.
    Luiz, F.S., Rigolin, G.: Optimal continuous variable quantum teleportation protocol for realistic settings. Ann. Phys. 354, 409 (2015)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Becir, A., Wahiddin, M.R.B.: Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve non-maximally entanglement. Quantum Inf. Process. 12, 1155 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations