Advertisement

Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states

  • Hailin Xiao
  • Zhongshan Zhang
Article

Abstract

Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase \({\log _2}(N^2+1)\) times than that of single-photon QKD system.

Keywords

Quantum secure communication Quantum key distribution Spatial multiplexing multiple-input multiple-out Decoherence-free subspace Orthogonal quantum states 

Notes

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China under Grants 61261018 and 61472094, Guangxi Natural Science Foundation under Grants 2014GXNSFGA118007, and the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2015D05).

References

  1. 1.
    Ahmad, H.F., Muhammad, D., Pua, C.H., Thambiratnam, K.: Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation. IEEE J. Sel. Top. Quantum Electron. 20(5), 0902308-1–0902308-8 (2014)Google Scholar
  2. 2.
    Capmany, J., Fernandez-Pousa, C.R.: Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate. IEEE J. Sel. Top. Quantum Electron. 15(6), 1607–1621 (2009)CrossRefGoogle Scholar
  3. 3.
    Capmany, J., Fernandez-Pousa, C.R.: Analysis of passive optical networks for subcarrier multiplexed quantum key distribution. IEEE Trans. Microw. Theory Tech. 58(11), 3220–3228 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Mora, J., Ruiz-Alba, A., Amaya, W., Capmany, J.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon. J. 3(3), 433–440 (2011)CrossRefGoogle Scholar
  5. 5.
    Zueco, D., Mazo, J.J., Solano, E., Garcia-Ripoll, J.J.: Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution. Phys. Rev. B 86(2), 024503-1–024503-11 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Mazzarella, L., Ticozzi, F., Sergienko, A.V., Vallone, G., Villoresi, P.: Asymmetric architecture for heralded single-photon sources. Phys. Rev. A 88(2), 023848-1–023848-10 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Muga, N.J., Ferreira, Mario F.S., Pinto, A.N.: QBER estimation in QKD systems with polarization encoding. J. Lightwave Technol. 29(3), 355–361 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Lupo, C., Giovannetti, V., Pirandola, S., Mancini, S., Lloyd, S.: Single-photon interference in sidebands of phase-modulated light for quantum cryptography. Phys. Rev. A 84(1), 010303-1–010303-6 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Djordjevic, I.B.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon. J. 5(6), 7600112-1–7600112-11 (2013)CrossRefGoogle Scholar
  10. 10.
    Hurtado, A., Raghunathan, R., Henning, I.D., Adams, M.J., Lester, L.F.: Simultaneous microwave- and millimeter-wave signal generation with a 1310-nm quantum-dot-distributed feedback laser. IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207-1–1801207-7 (2015)CrossRefGoogle Scholar
  11. 11.
    Dada, A.C.: Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution. Phys. Rev. A 91(5), 052313-1–052313-7 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Ruiz-Alba, A., Mora, J., Amava, W., Martinez, A., Garcia-Munoz, V., Calvo, D., Capmany, J.: Microwave photonics parallel quantum key distribution. IEEE Photon. J. 4(3), 931–942 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhao, G.H., Zhao, S.H., Yao, Z.S., Meng, W., Wang, X., Zhu, Z., Liu, F.: Forward spectral filtering parallel quantum key distribution system. Opt. Commun. 298–299, 254–259 (2013)CrossRefGoogle Scholar
  14. 14.
    Fang, J., Huang, P., Zeng, G.H.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 022315-1–022315-9 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Gabay, M., Amon, S.: Quantum key distribution by a free-space MIMO system. J. Lightwave Technol. 24(8), 3114–3120 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Abruzzo, S., Kampermann, H., Bruß, D.: Finite-range multiplexing enhances quantum key distribution via quantum repeaters. Phys. Rev. A 89(1), 012303-1–012303-8 (2014)ADSGoogle Scholar
  17. 17.
    Xiao, H., Ouyang, S.: Capacity of MIMO quantum depolarizing channels. J. Appl. Phys. 112(3), 034903-1–034903-6 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Yin, Z.Q., Zhao, Y.B., Zhou, Z.W., Han, Z.F., Guo, G.C.: Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 77(6), 062326-1–062326-6 (2008)ADSGoogle Scholar
  19. 19.
    Zhou, X.P., Su, S.L., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Parity-gate-based quantum information processing in decoherence-free subspace with nitrogen-vacancy centers. Opt. Commun. 352, 140–147 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Ticozzi, F., Viola, L.: Quantum markovian subsystems: invariance, attractivity, and control. IEEE Trans. Autom. Control 53(9), 2048–2063 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Brooke, P.G., Cresser, J.D., Patra, M.K.: Decoherence-free quantum information in the presence of dynamical evolution. Phys. Rev. A 77(6), 062313-1–062313-8 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Shaham, A., Eisenberg, H.S.: Realizing controllable depolarization in photonic quantum-information channels. Phys. Rev. A 83(2), 022303-1–022303-5 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89(3), 032303-1–032303-11 (2014)ADSGoogle Scholar
  25. 25.
    Zanardi, P., Rasctti, M.: Noisless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Chruscinski, D., Kossakowski, A.: Multipartite invariant states. II. Orthogonal symmetry. Phys. Rev. A 73(6), 062315-1–062315-6 (2006)ADSMathSciNetGoogle Scholar
  27. 27.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Arrigo, A.D., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88(4), 042337-1–042337-15 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75(7), 1239–1243 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Koashi, M., Imoto, N.: Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett. 79(12), 2383–2386 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Guo, G.P., Li, C.F., Shi, B.S., Guo, G.C.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64(4), 042301-1–042301-4 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Yang, Y.H., Gao, F., Tian, G.J., Cao, T.Q., Wen, Q.Y.: Local distinguishability of orthogonal quantum states in a \(2\times 2\times 2\) system. Phys. Rev. A 88(2), 024301-1–024301-4 (2013)ADSGoogle Scholar
  33. 33.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Capmany, J., Fernandez-Pousa, C.R.: Impact of third-order intermodulation on the performance of subcarrier multiplexed quantum key distribution. J. Lightwave Technol. 29(20), 3061–3069 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Fiorentino, M., Wong, F.N.C.: Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93(7), 070502-1–070502-4 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Silva, R., Guryanova, Y., Brunner, N., Linden, N., Short, A.J., Popescu, S.: Pre- and postselected quantum states: density matrices, tomography, and Kraus operators. Phys. Rev. A 89(1), 012121-1–012121-8 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Shapiro, J.H., Wong, F.N.C.: Attacking quantum key distribution with single-photon two-qubit quantum logic. Phys. Rev. A 73(1), 012315-1–012315-7 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Duan, L.M., Guo, G.C.: Optimal quantum codes for preventing collective amplitude damping. Phys. Rev. A 58(5), 3491–3495 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79(10), 1953–1956 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    Fan, H., Roychowdhury, V., Szkopek, T.: Optimal two-qubit quantum circuits using exchange interactions. Phys. Rev. A 72, 052323-1–052323-4 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Guo, G.P., Li, C.F., Shi, B.S., Li, J., Guo, G.C.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64(4), 042301-1–042301-4 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503-1–130503-5 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Jasim, O.K., Abbas, S., El-Horbaty, E.S.M., Salem, A.B.M.: Quantum key distribution: simulation and characterizations. Proc. Comput. Sci. 65, 701–710 (2015)CrossRefGoogle Scholar
  45. 45.
    Joseph, B., Tulio, Q.M., Nicolas, B.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112, 140407-1–140407-5 (2014)Google Scholar
  46. 46.
    Li, H.W., Yin, Z.Q., Wang, S., Guo, G.C., Han, Z.F.: Quantum key distribution based on quantum dimension and independent devices. Phys. Rev. A 89(3), 032302-1–032302-5 (2014)ADSGoogle Scholar
  47. 47.
    Chruscinski, D., Kossakowski, A.: Multipartite invariant states. I. Unitary symmetry. Phys. Rev. A 73(6), 062314-1–062314-10 (2006)ADSMathSciNetGoogle Scholar
  48. 48.
    Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235–5242 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Chandrasekaran, N., Shapiro, J.H., Wang, L.: Photon information efficient communication through atmospheric turbulencepart II: bounds on ergodic classical and private capacities. J. Lightwave Technol. 32(6), 1088–1097 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    Yu, N., Duan, R., Ying, M.: Distinguishability of quantum states by positive operator-valued measures with positive partial transpose. IEEE Trans. Inf. Theory 60(4), 2069–2079 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Renes, J.M., Wilde, M.M.: Polar codes for private and quantum communication over arbitrary channels. IEEE Trans. Inf. Theory 60(6), 3090–3103 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Horodecki, K., Horodecki, M., Horodecki, P., Leung, D., Oppenheim, J.: Quantum key distribution based on private states: unconditional security over untrusted channels with zero quantum capacity. IEEE Trans. Inf. Theory 54(6), 2604–2620 (2008)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Takeoka, M., Guha, S., Wilde, M.M.: The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60(8), 4987–4998 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Physics and Electronic Information EngineeringWenzhou UniversityWenzhouChina
  2. 2.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  3. 3.School of Information and CommunicationGuilin University of Electronic TechnologyGuilinChina
  4. 4.Beijing Engineering and Technology Research, Center for Convergence Networks and Ubiquitous ServicesUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations