Skip to main content
Log in

Quantum image processing?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Comment to this article was published on 30 March 2020

Abstract

This paper presents a number of problems concerning the practical (real) implementation of the techniques known as quantum image processing. The most serious problem is the recovery of the outcomes after the quantum measurement, which will be demonstrated in this work that is equivalent to a noise measurement, and it is not considered in the literature on the subject. It is noteworthy that this is due to several factors: (1) a classical algorithm that uses Dirac’s notation and then it is coded in MATLAB does not constitute a quantum algorithm, (2) the literature emphasizes the internal representation of the image but says nothing about the classical-to-quantum and quantum-to-classical interfaces and how these are affected by decoherence, (3) the literature does not mention how to implement in a practical way (at the laboratory) these proposals internal representations, (4) given that quantum image processing works with generic qubits, this requires measurements in all axes of the Bloch sphere, logically, and (5) among others. In return, the technique known as quantum Boolean image processing is mentioned, which works with computational basis states (CBS), exclusively. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  4. Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)

    Article  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum Turing machine. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  ADS  MATH  Google Scholar 

  6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Simon, D.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). arXiv:quant-ph/9508027

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  11. Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)

    MATH  Google Scholar 

  12. Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-making. J. Math. Psychol. 50, 220–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eldar, Y.C.: Quantum Signal Processing. Doctoral Thesis, MIT (2001)

  14. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Process. Mag. 19, 12–32 (2002)

    Article  ADS  Google Scholar 

  15. Vlaso, A. Y.: Quantum Computations and Images Recognition. arXiv:quant-ph/9703010 (1997)

  16. Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67(6), 062311 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings of Applied Imagery Pattern Recognition Workshop, pp. 39–44 (2003)

  18. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  19. Venegas-Andraca, S.E.: Discrete Quantum Walks and Quantum Image Processing. Thesis submitted for the degree of Doctor of Philosophy at the University of Oxford (2005)

  20. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  21. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  22. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, B., Le, P.Q., Iliyasu, A.M., et al.: A multi-channel representation for images on quantum computers using the RGB? color space. In: Proceedings of IEEE 7th International Symposium on Intelligent Signal Processing, pp. 160–165 (2011)

  24. Yan, F., et al.: Assessing the similarity of quantum images based on probability measurements. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2012)

  25. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Inf. 15(6), 698–706 (2011)

    Google Scholar 

  26. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1506-1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Srivastava, M., Panigrah, P.K.: Quantum Image Representation Through Two-Dimensional Quantum States and Normalized Amplitude. arXiv:1305.2251 [quant-ph] (2013)

  29. Li, H.S., Qingxin, Z., Lan, L., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Li, H.S., Zhu, Q., Zhou, R.G., Li, M.C., Song, I., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  31. Hu, B.Q., Huang, X.D., Zhou, R.G., et al.: A theoretical framework for quantum image representation and data loading scheme. Sci. China Inf. Sci. 57(3), 1–11 (2014)

    Article  Google Scholar 

  32. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, M., Lu, K., Zhang, Y.: FLPI: representation of quantum images for log-polar coordinate. In: Fifth International Conference on Digital Image Processing: ICDIP’2013 (2013)

  34. Zhang, Y., Lu, K., Gao, Y., Wang, M.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(8), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Yuan, S., Mao, X., Chen, L., et al.: Quantum digital image processing algorithms based on quantum measurement. Opt. Int. J. Light Electron. Opt. 124(23), 6386–6390 (2013)

    Article  Google Scholar 

  36. Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Zhang, W.W., Gao, F., Liu, B.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Yang, Y.G., Jia, X., Sun, S.J., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  41. Song, X.H., Niu, X.M.: Comment on: novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 13(6), 1301–1304 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  44. Tseng, C.C., Hwang, T.M.: Quantum digital image processing algorithms. In: 16th IPPR Conference on Computer Vision, Graphics and Image Processing: CVGIP’2003. Kinmen, Taiwang (2003)

  45. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  46. Niggebaum, A.: Quantum State Tomography of the 6 qubit photonic symmetric Dicke State. Thesis submitted for the degree of Doctor of Physics. Ludwig-Maximilians-Universität München (2011)

  47. Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. arXiv:0909.3304 [quant-ph] (2010)

  48. Audenaert, K.M.R., Scheel, S.: Quantum tomographic reconstruction with error bars: a Kalman filter approach. N. J. Phys. 11, 023028 (2009)

    Article  Google Scholar 

  49. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  50. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  51. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  52. Schalkoff, R.J.: Digital Image Processing and Computer Vision. Wiley, New York (1989)

    Google Scholar 

  53. MATLAB\(^{\textregistered }\) R2015a (Mathworks, Natick, MA). http://www.mathworks.com/

  54. Mastriani, M.: Quantum Boolean image denoising. Springer Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wheeler, N.: Problems at the Quantum/Classical Interface. http://ebookily.org/pdf/problems-at-the-quantum-classical-interface-174658500.html (2001)

  56. Baylis, W.E.: Quantum/classical interface: a geometric approach from the classical side. Comput. Noncommut. Algebra Appl. NATO Sci. Ser. II Math. Phys. Chem. 136, 127–154 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Baylis, W.E., Cabrera, R., Keselica, D.: Quantum/Classical Interface: Fermion Spin arXiv:0710.3144v2 (2007)

  58. Svozil, K.: Quantum Interfaces. CDMTCS Research Report Series, Technische Universitat Wien, Austria, CDMTCS-136, May 2000)

  59. Landsman, N.P.: Between classical and quantum. arXiv:quant-ph/0506082v2 (2005)

  60. Zhou, X., Bocko, M.F., Feldman, M.J.: Isolation Structures for the Solid-State Quantum-to-Classical Interface. Presented at International Conference on Quantum Information, Rochester, NY (2001)

  61. Zurek, W.H.: Decoherence and the Transition from Quantum to Classical: Revisited. arXiv:quant-ph/0306072v1 (2003)

  62. Jacobs, K.: Quantum Measurement Theory and its Applications. CUP, Cambridge (2014)

    Book  Google Scholar 

  63. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Iliyasu, A.M., Le, P.Q., Yan, F., Sun, B., Garcia, J.A.S., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. 5(2), 85–101 (2013)

    Article  Google Scholar 

  65. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)

    Article  MATH  Google Scholar 

  66. Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB color space. In: 2011 IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)

  67. Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Google Scholar 

  68. Iliyasu, A.M.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15(8), 2874–2974 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Caraiman, S., Manta, V.: Image processing using quantum computing. In: System Theory, Control and Computing (ICSTCC), pp. 1–6 (2012)

  70. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang, Y., Lu, K., hui Gao, Y., Wang, M.: A quantum algorithm of constructing image histogram. World Acad. Sci. Eng. Technol. 7(5), 610–613 (2013)

    Google Scholar 

  72. Caraiman, S., Manta, V.: Image representation and processing using ternary quantum computing. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, pp. 366–375. Springer, Berlin (2013)

    Chapter  Google Scholar 

  73. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Zhang, Yi, Kai, Lu, Gao, Yinghui, Wang, Mo: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Venegas-Andraca S.E., Bose S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)

  76. Lomonaco, S.J.: A Rosetta stone for quantum mechanics with an introduction to quantum computation. In: PSAPM, AMS, Providence, RI, vol. 58, pp. 3–65 (2002)

  77. Song, X.H., Wang, S., Niu, X.M.: Multi-channel quantum image representation based on phase transform and elementary transformations. J. Inf. Hiding Multimed. Signal Process. 5(4), 574–585 (2014)

    Google Scholar 

  78. Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  79. Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube. arXiv:quant-ph/0501169 (2005)

  80. Dass, T.: Measurements and Decoherence. arXiv:quant-ph/0505070v1 (2005)

  81. Kendon, V., Tregenna, B.: Decoherence in a quantum walk on the line. In: Proceedings of QCMC 2002 (2002)

  82. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)

    Article  ADS  Google Scholar 

  83. Kendon, V., Tregenna, B.: Decoherence in discrete quantum walks. In: Selected Lectures from DICE 2002. Lecture Notes in Physics, vol. 633, pp. 253–267 (2003)

  84. Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Phys. A c347, 137–152 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  85. DiVincenzo, D.P.: The Physical Implementation of Quantum Computation. arXiv:quant-ph/0002077v3 (2008)

  86. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005). arXiv:quant-ph/0312059

    Article  ADS  Google Scholar 

  88. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Belavkin, V.P.: Optimal Measurement and Control in Quantum Dynamical Systems (Technical Report). Copernicus University, Torun, pp. 3–38. arXiv:quant-ph/0208108 (1979)

  90. Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42(2), 171–201 (1992). arXiv:math/0512362

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Belavkin, V.P.: Measurement, filtering and control in quantum open dynamical systems. Rep. Math. Phys. 43(3), A405–A425 (1999). arXiv:quant-ph/0208108

    Article  ADS  MathSciNet  Google Scholar 

  92. Belavkin, V.P.: Nondemolition principle of quantum measurement theory. Found. Phys. 24(5), 685–714 (1994). arXiv:quant-ph/0512188

    Article  ADS  MathSciNet  Google Scholar 

  93. Volz J., Gehr R., Dubois G., Esteve J. and Reichel J.: Measuring the internal state of a single atom without energy exchange. arXiv:1106.1854v1 [quant-ph] (2011)

  94. Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)

    MATH  Google Scholar 

  95. Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Al Nuovo Cimento 27(10), 293–298 (1980)

    Article  MathSciNet  Google Scholar 

  96. Lundeen, J. S.: Ph.D. Thesis: Generalized Measurement and Post-selection in Optical Quantum Information. University of Toronto (2006)

  97. Parrott, S.: Essay on Restoring the quantum state after a measurement. http://www.math.umb.edu/sp/restore2.pdf (2013)

  98. Hosten, O., Kwiat, P.G.: Weak Measurements and Counterfactual Computation. arXiv:quant-ph/0612159 (2006)

  99. Berry, M.V., Brunner, N., Popescu, S., Shukla, P.: Can apparent superluminal neutrino speeds be explained as a quantum weak measurement? arXiv:1110.2832 [hep-ph] (2011)

  100. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  101. Berry, M.V., Brunner, N., Popescu, S., Shukla, P.: Can apparent superluminal neutrino speeds be explained as a quantum weak measurement? J. Phys. A Math. Theor. 44, 492001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  102. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  103. Cheong, Y.W., Lee, S.-W.: Balance between information gain and reversibility in weak measurement. arXiv:1203.4909 [quant-ph] (2012)

  104. Balló, G.: Master of Engineering in Information Technology thesis: quantum process tomography using optimization methods. University of Pannonia (2009)

  105. Niggebaum, A.: Master thesis: Quantum State Tomography of the 6 qubit photonic symmetric Dicke State, Ludwig Maximilians Universität München (2011)

  106. Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography review article. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)

    Article  ADS  Google Scholar 

  107. Jacobs, K.: Stochastic Processes for Physicists: Understanding Noisy Systems. CUP, Cambridge (2010)

    Book  MATH  Google Scholar 

  108. Koashi, M., Imoto, N.: What is Possible without Disturbing Partially Known Quantum States? arXiv:quant-ph/0101144 (2002)

  109. Bruder, C., Loss, D.: Viewpoint: undoing a quantum measurement. Physics 1, 34 (2008)

    Article  Google Scholar 

  110. Blume-Kohout, R.: Optimal, reliable estimation of quantum states. arXiv:quant-ph/0611080 (2006)

  111. Verma, A.: Quantum image storage, retrieval and teleportation. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(10), 387–391 (2013)

    Google Scholar 

  112. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. arXiv:quantph/0402085 (2003)

  114. Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.C.: Single-Photon-Level Quantum Image Memory Based on Cold Atomic Ensembles. arXiv:1305.2675 (2013)

  115. Srivastava, M., Roy-Moulick, S., Panigrahi, P.K.: Quantum Image Representation through Two-Dimensional Quantum States and Normalized Amplitude. arXiv:1305.2251v4 [cs.MM] (2015)

  116. Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–84 (2013)

    Article  Google Scholar 

  117. Zhou, C., Hu, Z., Wang, F., Fan, H., Shang, L.: Quantum collapsing median filter. Adv. Intell. Comput. Theor. Appl. Ser. Commun. Comput. Inf. Sci. 93, 454–461 (1020)

    MATH  Google Scholar 

  118. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MATLAB, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  119. Sanchez, E.N., Alanís, A.Y., Loukianov, A.G.: Discrete-Time High Order Neural Control: Trained with Kalman Filtering. Springer, Berlín (2008)

    Book  MATH  Google Scholar 

  120. Dini, D.H., Mandic, D.P.: Class of widely linear complex Kalman filters. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 775–786 (2012)

    Article  Google Scholar 

  121. Haykin, S.: Kalman Filtering and Neural Networks. Wiley, New York (2001)

    Book  Google Scholar 

  122. Brookner, E.: Tracking and Kalman Filtering Made Easy. Wiley, New York (1998)

    Book  Google Scholar 

  123. Farhang-Boroujeny, B.: Adaptive Filtering: Theory and Applications. Wiley, New York (1998)

    MATH  Google Scholar 

  124. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  125. Diniz, P.S.R.: Adaptive Filtering: Algorithms and Practical Implementation, 2nd edn. Kluwer Academic Publishers, Dordrecht (2008)

    Book  MATH  Google Scholar 

  126. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. Youssry, A., El-Rafei, A., Elramly, S.: A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Inf. Process. 14(10), 3613–3638 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  129. Lo, H.-K., Zhao, Y.: Quantum Cryptography. arXiv:0803.2507v4 [quant-ph] (2008)

  130. Song, X., Wang, S., Abd El-Latif, A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 29(4), 379–388 (2014)

    Article  Google Scholar 

  131. Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2014)

    Article  MATH  Google Scholar 

  132. Song, X.H., Wang, S., Abd El-Latif, A.A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Akhshani, A., Akhavan, A., Lim, S.C.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. Qi, B., Hou, Z., Li, L., Dong, D., Xiang, G., Guo, G.-C.: Quantum state tomography via linear regression estimation. Sci. Rep. 3, 3496 (2013)

    ADS  Google Scholar 

  137. Sang, J., Wang, S., Shi, X., et al.: Quantum realization of Arnold scrambling for IFRQI. Int. J. Theor. Phys. 55(8), 3706–3721 (2016)

    Article  MathSciNet  Google Scholar 

  138. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  139. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the RGB color space. In: 2011 IEEE 7th International Symposium on Intelligent Signal Processing, pp. 1–6. Floriana, Malta, IEEE (2011)

  141. Wikipedia. https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units

  142. Wikipedia. https://en.wikipedia.org/wiki/Field-programmable_gate_array

  143. Mahler, D.H.: Quantum Measurement on a Budget. Thesis submitted for the degree of Doctor of Philosophy. Department of Physics, University of Toronto (2015)

Download references

Acknowledgements

Author wishes to thank all the technical staff of the various laboratories of the National Commission of Atomic Energy for the help they gave me in the preparation of experiments. It is impossible to name them all here, simply, thank you all for all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Mastriani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastriani, M. Quantum image processing?. Quantum Inf Process 16, 27 (2017). https://doi.org/10.1007/s11128-016-1457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1457-y

Keywords

Navigation