Quantum image processing?

Article

Abstract

This paper presents a number of problems concerning the practical (real) implementation of the techniques known as quantum image processing. The most serious problem is the recovery of the outcomes after the quantum measurement, which will be demonstrated in this work that is equivalent to a noise measurement, and it is not considered in the literature on the subject. It is noteworthy that this is due to several factors: (1) a classical algorithm that uses Dirac’s notation and then it is coded in MATLAB does not constitute a quantum algorithm, (2) the literature emphasizes the internal representation of the image but says nothing about the classical-to-quantum and quantum-to-classical interfaces and how these are affected by decoherence, (3) the literature does not mention how to implement in a practical way (at the laboratory) these proposals internal representations, (4) given that quantum image processing works with generic qubits, this requires measurements in all axes of the Bloch sphere, logically, and (5) among others. In return, the technique known as quantum Boolean image processing is mentioned, which works with computational basis states (CBS), exclusively. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too.

Keywords

Quantum algorithms Quantum Boolean image processing Quantum/classical interfaces Quantum image processing Quantum measurement Quantum signal processing 

Notes

Acknowledgements

Author wishes to thank all the technical staff of the various laboratories of the National Commission of Atomic Energy for the help they gave me in the preparation of experiments. It is impossible to name them all here, simply, thank you all for all.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  2. 2.
    Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)CrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum Turing machine. Proc. R. Soc. Lond. A400, 97–117 (1985)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A439, 553–558 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Simon, D.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). arXiv:quant-ph/9508027 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2004)MATHGoogle Scholar
  11. 11.
    Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)MATHGoogle Scholar
  12. 12.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-making. J. Math. Psychol. 50, 220–241 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eldar, Y.C.: Quantum Signal Processing. Doctoral Thesis, MIT (2001)Google Scholar
  14. 14.
    Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Process. Mag. 19, 12–32 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Vlaso, A. Y.: Quantum Computations and Images Recognition. arXiv:quant-ph/9703010 (1997)
  16. 16.
    Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67(6), 062311 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings of Applied Imagery Pattern Recognition Workshop, pp. 39–44 (2003)Google Scholar
  18. 18.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)ADSGoogle Scholar
  19. 19.
    Venegas-Andraca, S.E.: Discrete Quantum Walks and Quantum Image Processing. Thesis submitted for the degree of Doctor of Philosophy at the University of Oxford (2005)Google Scholar
  20. 20.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)
  22. 22.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sun, B., Le, P.Q., Iliyasu, A.M., et al.: A multi-channel representation for images on quantum computers using the RGB? color space. In: Proceedings of IEEE 7th International Symposium on Intelligent Signal Processing, pp. 160–165 (2011)Google Scholar
  24. 24.
    Yan, F., et al.: Assessing the similarity of quantum images based on probability measurements. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2012)Google Scholar
  25. 25.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Inf. 15(6), 698–706 (2011)Google Scholar
  26. 26.
    Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATHGoogle Scholar
  27. 27.
    Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1506-1418 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Srivastava, M., Panigrah, P.K.: Quantum Image Representation Through Two-Dimensional Quantum States and Normalized Amplitude. arXiv:1305.2251 [quant-ph] (2013)
  29. 29.
    Li, H.S., Qingxin, Z., Lan, L., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Li, H.S., Zhu, Q., Zhou, R.G., Li, M.C., Song, I., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)CrossRefGoogle Scholar
  31. 31.
    Hu, B.Q., Huang, X.D., Zhou, R.G., et al.: A theoretical framework for quantum image representation and data loading scheme. Sci. China Inf. Sci. 57(3), 1–11 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wang, M., Lu, K., Zhang, Y.: FLPI: representation of quantum images for log-polar coordinate. In: Fifth International Conference on Digital Image Processing: ICDIP’2013 (2013)Google Scholar
  34. 34.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(8), 3103–3126 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Yuan, S., Mao, X., Chen, L., et al.: Quantum digital image processing algorithms based on quantum measurement. Opt. Int. J. Light Electron. Opt. 124(23), 6386–6390 (2013)CrossRefGoogle Scholar
  36. 36.
    Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhang, W.W., Gao, F., Liu, B.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Yang, Y.G., Jia, X., Sun, S.J., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)CrossRefGoogle Scholar
  41. 41.
    Song, X.H., Niu, X.M.: Comment on: novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 13(6), 1301–1304 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Tseng, C.C., Hwang, T.M.: Quantum digital image processing algorithms. In: 16th IPPR Conference on Computer Vision, Graphics and Image Processing: CVGIP’2003. Kinmen, Taiwang (2003)Google Scholar
  45. 45.
    Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Niggebaum, A.: Quantum State Tomography of the 6 qubit photonic symmetric Dicke State. Thesis submitted for the degree of Doctor of Physics. Ludwig-Maximilians-Universität München (2011)Google Scholar
  47. 47.
    Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. arXiv:0909.3304 [quant-ph] (2010)
  48. 48.
    Audenaert, K.M.R., Scheel, S.: Quantum tomographic reconstruction with error bars: a Kalman filter approach. N. J. Phys. 11, 023028 (2009)CrossRefGoogle Scholar
  49. 49.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  50. 50.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  51. 51.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar
  52. 52.
    Schalkoff, R.J.: Digital Image Processing and Computer Vision. Wiley, New York (1989)Google Scholar
  53. 53.
    MATLAB\(^{\textregistered }\) R2015a (Mathworks, Natick, MA). http://www.mathworks.com/
  54. 54.
    Mastriani, M.: Quantum Boolean image denoising. Springer Quantum Inf. Process. 14(5), 1647–1673 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Wheeler, N.: Problems at the Quantum/Classical Interface. http://ebookily.org/pdf/problems-at-the-quantum-classical-interface-174658500.html (2001)
  56. 56.
    Baylis, W.E.: Quantum/classical interface: a geometric approach from the classical side. Comput. Noncommut. Algebra Appl. NATO Sci. Ser. II Math. Phys. Chem. 136, 127–154 (2004)MathSciNetMATHGoogle Scholar
  57. 57.
    Baylis, W.E., Cabrera, R., Keselica, D.: Quantum/Classical Interface: Fermion Spin arXiv:0710.3144v2 (2007)
  58. 58.
    Svozil, K.: Quantum Interfaces. CDMTCS Research Report Series, Technische Universitat Wien, Austria, CDMTCS-136, May 2000)Google Scholar
  59. 59.
    Landsman, N.P.: Between classical and quantum. arXiv:quant-ph/0506082v2 (2005)
  60. 60.
    Zhou, X., Bocko, M.F., Feldman, M.J.: Isolation Structures for the Solid-State Quantum-to-Classical Interface. Presented at International Conference on Quantum Information, Rochester, NY (2001)Google Scholar
  61. 61.
    Zurek, W.H.: Decoherence and the Transition from Quantum to Classical: Revisited. arXiv:quant-ph/0306072v1 (2003)
  62. 62.
    Jacobs, K.: Quantum Measurement Theory and its Applications. CUP, Cambridge (2014)CrossRefGoogle Scholar
  63. 63.
    Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Iliyasu, A.M., Le, P.Q., Yan, F., Sun, B., Garcia, J.A.S., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. 5(2), 85–101 (2013)CrossRefGoogle Scholar
  65. 65.
    Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)CrossRefMATHGoogle Scholar
  66. 66.
    Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB color space. In: 2011 IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)Google Scholar
  67. 67.
    Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)Google Scholar
  68. 68.
    Iliyasu, A.M.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15(8), 2874–2974 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Caraiman, S., Manta, V.: Image processing using quantum computing. In: System Theory, Control and Computing (ICSTCC), pp. 1–6 (2012)Google Scholar
  70. 70.
    Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Zhang, Y., Lu, K., hui Gao, Y., Wang, M.: A quantum algorithm of constructing image histogram. World Acad. Sci. Eng. Technol. 7(5), 610–613 (2013)Google Scholar
  72. 72.
    Caraiman, S., Manta, V.: Image representation and processing using ternary quantum computing. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, pp. 366–375. Springer, Berlin (2013)CrossRefGoogle Scholar
  73. 73.
    Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Zhang, Yi, Kai, Lu, Gao, Yinghui, Wang, Mo: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Venegas-Andraca S.E., Bose S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)Google Scholar
  76. 76.
    Lomonaco, S.J.: A Rosetta stone for quantum mechanics with an introduction to quantum computation. In: PSAPM, AMS, Providence, RI, vol. 58, pp. 3–65 (2002)Google Scholar
  77. 77.
    Song, X.H., Wang, S., Niu, X.M.: Multi-channel quantum image representation based on phase transform and elementary transformations. J. Inf. Hiding Multimed. Signal Process. 5(4), 574–585 (2014)Google Scholar
  78. 78.
    Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube. arXiv:quant-ph/0501169 (2005)
  80. 80.
    Dass, T.: Measurements and Decoherence. arXiv:quant-ph/0505070v1 (2005)
  81. 81.
    Kendon, V., Tregenna, B.: Decoherence in a quantum walk on the line. In: Proceedings of QCMC 2002 (2002)Google Scholar
  82. 82.
    Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)ADSCrossRefGoogle Scholar
  83. 83.
    Kendon, V., Tregenna, B.: Decoherence in discrete quantum walks. In: Selected Lectures from DICE 2002. Lecture Notes in Physics, vol. 633, pp. 253–267 (2003)Google Scholar
  84. 84.
    Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Phys. A c347, 137–152 (2005)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    DiVincenzo, D.P.: The Physical Implementation of Quantum Computation. arXiv:quant-ph/0002077v3 (2008)
  86. 86.
    DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005). arXiv:quant-ph/0312059 ADSCrossRefGoogle Scholar
  88. 88.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Belavkin, V.P.: Optimal Measurement and Control in Quantum Dynamical Systems (Technical Report). Copernicus University, Torun, pp. 3–38. arXiv:quant-ph/0208108 (1979)
  90. 90.
    Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42(2), 171–201 (1992). arXiv:math/0512362 ADSMathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Belavkin, V.P.: Measurement, filtering and control in quantum open dynamical systems. Rep. Math. Phys. 43(3), A405–A425 (1999). arXiv:quant-ph/0208108 ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    Belavkin, V.P.: Nondemolition principle of quantum measurement theory. Found. Phys. 24(5), 685–714 (1994). arXiv:quant-ph/0512188 ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Volz J., Gehr R., Dubois G., Esteve J. and Reichel J.: Measuring the internal state of a single atom without energy exchange. arXiv:1106.1854v1 [quant-ph] (2011)
  94. 94.
    Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)MATHGoogle Scholar
  95. 95.
    Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Al Nuovo Cimento 27(10), 293–298 (1980)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Lundeen, J. S.: Ph.D. Thesis: Generalized Measurement and Post-selection in Optical Quantum Information. University of Toronto (2006)Google Scholar
  97. 97.
    Parrott, S.: Essay on Restoring the quantum state after a measurement. http://www.math.umb.edu/sp/restore2.pdf (2013)
  98. 98.
    Hosten, O., Kwiat, P.G.: Weak Measurements and Counterfactual Computation. arXiv:quant-ph/0612159 (2006)
  99. 99.
    Berry, M.V., Brunner, N., Popescu, S., Shukla, P.: Can apparent superluminal neutrino speeds be explained as a quantum weak measurement? arXiv:1110.2832 [hep-ph] (2011)
  100. 100.
    Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    Berry, M.V., Brunner, N., Popescu, S., Shukla, P.: Can apparent superluminal neutrino speeds be explained as a quantum weak measurement? J. Phys. A Math. Theor. 44, 492001 (2011)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  103. 103.
    Cheong, Y.W., Lee, S.-W.: Balance between information gain and reversibility in weak measurement. arXiv:1203.4909 [quant-ph] (2012)
  104. 104.
    Balló, G.: Master of Engineering in Information Technology thesis: quantum process tomography using optimization methods. University of Pannonia (2009)Google Scholar
  105. 105.
    Niggebaum, A.: Master thesis: Quantum State Tomography of the 6 qubit photonic symmetric Dicke State, Ludwig Maximilians Universität München (2011)Google Scholar
  106. 106.
    Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography review article. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)ADSCrossRefGoogle Scholar
  107. 107.
    Jacobs, K.: Stochastic Processes for Physicists: Understanding Noisy Systems. CUP, Cambridge (2010)CrossRefMATHGoogle Scholar
  108. 108.
    Koashi, M., Imoto, N.: What is Possible without Disturbing Partially Known Quantum States? arXiv:quant-ph/0101144 (2002)
  109. 109.
    Bruder, C., Loss, D.: Viewpoint: undoing a quantum measurement. Physics 1, 34 (2008)CrossRefGoogle Scholar
  110. 110.
    Blume-Kohout, R.: Optimal, reliable estimation of quantum states. arXiv:quant-ph/0611080 (2006)
  111. 111.
    Verma, A.: Quantum image storage, retrieval and teleportation. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(10), 387–391 (2013)Google Scholar
  112. 112.
    Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  113. 113.
    Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. arXiv:quantph/0402085 (2003)
  114. 114.
    Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.C.: Single-Photon-Level Quantum Image Memory Based on Cold Atomic Ensembles. arXiv:1305.2675 (2013)
  115. 115.
    Srivastava, M., Roy-Moulick, S., Panigrahi, P.K.: Quantum Image Representation through Two-Dimensional Quantum States and Normalized Amplitude. arXiv:1305.2251v4 [cs.MM] (2015)
  116. 116.
    Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–84 (2013)CrossRefGoogle Scholar
  117. 117.
    Zhou, C., Hu, Z., Wang, F., Fan, H., Shang, L.: Quantum collapsing median filter. Adv. Intell. Comput. Theor. Appl. Ser. Commun. Comput. Inf. Sci. 93, 454–461 (1020)MATHGoogle Scholar
  118. 118.
    Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MATLAB, 2nd edn. Wiley, New York (2001)MATHGoogle Scholar
  119. 119.
    Sanchez, E.N., Alanís, A.Y., Loukianov, A.G.: Discrete-Time High Order Neural Control: Trained with Kalman Filtering. Springer, Berlín (2008)CrossRefMATHGoogle Scholar
  120. 120.
    Dini, D.H., Mandic, D.P.: Class of widely linear complex Kalman filters. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 775–786 (2012)CrossRefGoogle Scholar
  121. 121.
    Haykin, S.: Kalman Filtering and Neural Networks. Wiley, New York (2001)CrossRefGoogle Scholar
  122. 122.
    Brookner, E.: Tracking and Kalman Filtering Made Easy. Wiley, New York (1998)CrossRefGoogle Scholar
  123. 123.
    Farhang-Boroujeny, B.: Adaptive Filtering: Theory and Applications. Wiley, New York (1998)MATHGoogle Scholar
  124. 124.
    Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)MATHGoogle Scholar
  125. 125.
    Diniz, P.S.R.: Adaptive Filtering: Algorithms and Practical Implementation, 2nd edn. Kluwer Academic Publishers, Dordrecht (2008)CrossRefMATHGoogle Scholar
  126. 126.
    Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  127. 127.
    Youssry, A., El-Rafei, A., Elramly, S.: A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Inf. Process. 14(10), 3613–3638 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  128. 128.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  129. 129.
    Lo, H.-K., Zhao, Y.: Quantum Cryptography. arXiv:0803.2507v4 [quant-ph] (2008)
  130. 130.
    Song, X., Wang, S., Abd El-Latif, A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 29(4), 379–388 (2014)CrossRefGoogle Scholar
  131. 131.
    Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2014)CrossRefMATHGoogle Scholar
  132. 132.
    Song, X.H., Wang, S., Abd El-Latif, A.A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  133. 133.
    Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  134. 134.
    Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  135. 135.
    Akhshani, A., Akhavan, A., Lim, S.C.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  136. 136.
    Qi, B., Hou, Z., Li, L., Dong, D., Xiang, G., Guo, G.-C.: Quantum state tomography via linear regression estimation. Sci. Rep. 3, 3496 (2013)ADSGoogle Scholar
  137. 137.
    Sang, J., Wang, S., Shi, X., et al.: Quantum realization of Arnold scrambling for IFRQI. Int. J. Theor. Phys. 55(8), 3706–3721 (2016)MathSciNetCrossRefGoogle Scholar
  138. 138.
    Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATHGoogle Scholar
  139. 139.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  140. 140.
    Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the RGB color space. In: 2011 IEEE 7th International Symposium on Intelligent Signal Processing, pp. 1–6. Floriana, Malta, IEEE (2011)Google Scholar
  141. 141.
  142. 142.
  143. 143.
    Mahler, D.H.: Quantum Measurement on a Budget. Thesis submitted for the degree of Doctor of Philosophy. Department of Physics, University of Toronto (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Qunoch LLCLewesUSA

Personalised recommendations