Advertisement

Quantum Information Processing

, Volume 15, Issue 12, pp 5023–5035 | Cite as

Two-party quantum key agreement against collective noise

  • Ye-Feng He
  • Wen-Ping Ma
Article

Abstract

In this paper, two two-party quantum key agreement protocols are proposed with logical \(\chi \)-states and logical Bell states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively. They make full use of the measurement correlation property of multi-particle entangled states and the delayed measurement technique. This ensures that two participants can exchange the secret keys of each other and fairly establishes a shared key. There is no information leakage problem when establishing a shared key. The use of the delayed measurement technique and the decoy state technology makes the two protocols resist against both participant and outsider attacks. Furthermore, the two protocols are congenitally free from the Trojan horse attacks and have high qubit efficiency.

Keywords

Quantum cryptography Quantum key agreement Collective noise Logical \(\chi \)-state Logical Bell state 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61373171, 61472472).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers. Systems and Signal Processing, pp. 175–179. Bangalore, India (1984)Google Scholar
  2. 2.
    Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14, 2577–2587 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wang, L.L., Ma, W.P.: Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom. Mod. Phys. Lett. B 30, 1650051 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53, 1730–1737 (2014)CrossRefMATHGoogle Scholar
  5. 5.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRefGoogle Scholar
  6. 6.
    Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236-242. National Taiwan University of Science and Technology, Taipei, 10–11 June 2004Google Scholar
  7. 7.
    Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Tsai, C.W., Hwang, T.: On “quantum key agreement protocol”. Taiwan. R.O.C, Technical Report, C-S-I-E, NCKU (2009)Google Scholar
  11. 11.
    Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, 27–28 May 2010Google Scholar
  12. 12.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “Multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14, 4245–4254 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)CrossRefMATHGoogle Scholar
  29. 29.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372, 3333–3336 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)ADSCrossRefMATHGoogle Scholar
  31. 31.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53, 3719–3727 (2014)CrossRefMATHGoogle Scholar
  34. 34.
    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469–1486 (2015)ADSCrossRefMATHGoogle Scholar
  35. 35.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Telecommunications and Information EngineeringXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina

Personalised recommendations