Advertisement

Quantum Information Processing

, Volume 15, Issue 11, pp 4711–4727 | Cite as

Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise

  • Shih-Hung Kao
  • Chun-Wei Yang
  • Tzonelih Hwang
Article
  • 156 Downloads

Abstract

This paper proposes two new fault-tolerant controlled deterministic secure quantum communication (CDSQC) protocols based only on Einstein–Podolsky–Rosen (EPR) entangled states. The proposed protocols are designed to be robust against the collective-dephasing noise and the collective-rotation noise, respectively. Compared to the existing fault-tolerant controlled quantum communication protocols, the proposed protocols not only can do without a quantum channel between the receiver and the controller as the state-of-the-art protocols do, but also have the advantage that the number of quantum particles required in the CDSQC protocols is reduced owing to the use of the simplest entangled states.

Keywords

Quantum cryptography Controlled quantum communication Fault-tolerant protocol 

Notes

Acknowledgments

This research is partially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under the Contract No. MOST 104-2221-E-006-102. The authors would like to thanks for the anonymous reviewers’s valuable comments to improve the quality of this paper. Especially, the controller’s attack described in Sect. 4 is due to an reviewer.

References

  1. 1.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002), copyright (C) 2011 The American Physical Society Please report any problems to prolaaps.org PRAGoogle Scholar
  2. 2.
    Kim, B., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)CrossRefGoogle Scholar
  3. 3.
    Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Deng, F.-G., Li, X.-H., Li, C.-Y., Zhou, P., Zhou, H.-Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Li, X.-H., Zhou, P., Liang, Y.-J., Zhou, H.-Y., Deng, F.-G.: Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett. 23(5), 1080 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Li, X.-H., Li, C.-Y., Deng, F.G., Zhou, P., Liang, Y.-J., Zhou, H.-Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Ge, H., Liu, W.-Y.: A new quantum secure direct communication protocol using decoherence-free subspace. Chin. Phys. Lett. 24(10), 2727 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Qin, S.-J., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Quantum secure direct communication over the collective amplitude damping channel. Sci. China Ser. G Phys. Mech. Astron. 52(8), 1208–1212 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 08(03), 443–450 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Wang, J., Zhang, Q., Tang, C.-J.: Multiparty controlled quantum secure direct communication using greenberger-horne-zeilinger state. Opt. Commun. 266(2), 732–737 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Xia, Y.-J., Man, Z.-X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, X.-B., Wang, T.-Y., Du, J.-Z., Wen, Q.-Y., Zhu, F.-C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Qin, S.-J., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Comment on controlled dsqc using five-qubit entangled states and two-step security test. Opt. Commun. 282(13), 2656–2658 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282(2), 333–337 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using greenberger-horne-zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F., Ren, Y.-P., Liu, H.-W.: A revised controlled deterministic secure quantum communication with five-photon entangled state. Opt. Commun. 283(2), 344–347 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Xiu, X.-M., Dong, L., Gao, Y.-J.: Secure four-site distribution and quantum communication of [chi]-type entangled states. Opt. Commun. 284(7), 2065–2069 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Kao, S.-H., Tasi, C.-W., Hwang, T.: Enhanced multiparty controlled QSDC using Ghz state. Commun. Theor. Phys. 55(6), 1007 (2011)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Kao, S.-H., Tsai, C.-W., Hwang, T.: Comment on: supervisory asymmetric deterministic secure quantum communication. Int. J. Theor. Phys. 51(12), 3868–3875 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tseng, H.-Y., Tsai, C.-W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51(8), 2447–2454 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tsai, C.-W., Hsieh, C.-R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 61(3), 779–783 (2011)Google Scholar
  25. 25.
    Haffner, H., Hansel, W., Roos, C.F., Benhelm, J., Chek-al kar, D., Chwalla, M., Korber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Guhne, O., Dur, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84(11), 2525–2528 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel. Laser Phys. 24(10), 105203 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Kao, S.-H., Yang, C.-W., Hwang, T.: Fault-tolerant controlled quantum secure direct communication using greenberger–horne–zeilinger states against collective noises. In: Cryptology and Information Security Conference 2015 (CISC2015), National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, May 28–29 (2015)Google Scholar
  32. 32.
    Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14(6), 2211–2225 (2015)ADSCrossRefMATHGoogle Scholar
  33. 33.
    Hwang, T., Lin, T.-H., Kao, S.-H.: Quantum entanglement establishment between two strangers. Quantum Inf. Process. 15(1), 385–403 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)ADSCrossRefMATHGoogle Scholar
  37. 37.
    Wei, H., Qiao-Yan, W., Bin, L., Fei, G.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B 24(7), 070308 (2015)CrossRefGoogle Scholar
  38. 38.
    Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing, pp. 175–179 (1984)Google Scholar
  39. 39.
    Li, C.-Y., Zhou, H.-Y., Wang, Y., Deng, F.-G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: An external attack on the Brádler–Dušek protocol. J. Phys. B At. Mol. Opt. Phys. 40(24), 4661 (2007)ADSCrossRefMATHGoogle Scholar
  41. 41.
    Gao, F., Lin, S., Wen, Q.-Y., Zhu, F.-C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Qin, S.-J., Gao, F., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Lee, I.: Esl learners’ performance in error correction in writing: some implications for teaching. System 25(4), 465–477 (1997)CrossRefGoogle Scholar
  44. 44.
    Zhang, Z.: Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory 54(1), 209–218 (2008)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Clark Jr., G.C., Cain, J.B.: Error-correction coding for digital communications. Springer Science and Business Media, Berlin (2013)MATHGoogle Scholar
  46. 46.
    Candes, E., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear programming. In: Conference Proceedings on 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 668–681 (2005)Google Scholar
  47. 47.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC
  2. 2.Smart Network System InstituteInstitute for Information IndustryTaipei CityTaiwan, ROC

Personalised recommendations