# Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise

- 156 Downloads

## Abstract

This paper proposes two new fault-tolerant controlled deterministic secure quantum communication (CDSQC) protocols based only on Einstein–Podolsky–Rosen (EPR) entangled states. The proposed protocols are designed to be robust against the collective-dephasing noise and the collective-rotation noise, respectively. Compared to the existing fault-tolerant controlled quantum communication protocols, the proposed protocols not only can do without a quantum channel between the receiver and the controller as the state-of-the-art protocols do, but also have the advantage that the number of quantum particles required in the CDSQC protocols is reduced owing to the use of the simplest entangled states.

## Keywords

Quantum cryptography Controlled quantum communication Fault-tolerant protocol## Notes

### Acknowledgments

This research is partially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under the Contract No. MOST 104-2221-E-006-102. The authors would like to thanks for the anonymous reviewers’s valuable comments to improve the quality of this paper. Especially, the controller’s attack described in Sect. 4 is due to an reviewer.

## References

- 1.Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A
**65**(3), 032302 (2002), copyright (C) 2011 The American Physical Society Please report any problems to prolaaps.org PRAGoogle Scholar - 2.Kim, B., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett.
**89**(18), 187902 (2002)CrossRefGoogle Scholar - 3.Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A
**68**(4), 042317 (2003)ADSCrossRefGoogle Scholar - 4.Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A
**69**(5), 052319 (2004)ADSCrossRefGoogle Scholar - 5.Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett.
**21**(4), 601 (2004)ADSCrossRefGoogle Scholar - 6.Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A
**71**(4), 044305 (2005)ADSCrossRefGoogle Scholar - 7.Deng, F.-G., Li, X.-H., Li, C.-Y., Zhou, P., Zhou, H.-Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A
**359**(5), 359–365 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar - 8.Li, X.-H., Zhou, P., Liang, Y.-J., Zhou, H.-Y., Deng, F.-G.: Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett.
**23**(5), 1080 (2006)ADSCrossRefGoogle Scholar - 9.Li, X.-H., Li, C.-Y., Deng, F.G., Zhou, P., Liang, Y.-J., Zhou, H.-Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys.
**16**(8), 2149 (2007)ADSCrossRefGoogle Scholar - 10.Ge, H., Liu, W.-Y.: A new quantum secure direct communication protocol using decoherence-free subspace. Chin. Phys. Lett.
**24**(10), 2727 (2007)ADSMathSciNetCrossRefGoogle Scholar - 11.Qin, S.-J., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Quantum secure direct communication over the collective amplitude damping channel. Sci. China Ser. G Phys. Mech. Astron.
**52**(8), 1208–1212 (2009)ADSCrossRefGoogle Scholar - 12.Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf.
**08**(03), 443–450 (2010)CrossRefMATHGoogle Scholar - 13.Wang, J., Zhang, Q., Tang, C.-J.: Multiparty controlled quantum secure direct communication using greenberger-horne-zeilinger state. Opt. Commun.
**266**(2), 732–737 (2006)ADSMathSciNetCrossRefGoogle Scholar - 14.Xia, Y.-J., Man, Z.-X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys.
**48**(1), 79 (2007)ADSMathSciNetCrossRefGoogle Scholar - 15.Chen, X.-B., Wang, T.-Y., Du, J.-Z., Wen, Q.-Y., Zhu, F.-C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf.
**6**(3), 543–551 (2008)CrossRefMATHGoogle Scholar - 16.Qin, S.-J., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Comment on controlled dsqc using five-qubit entangled states and two-step security test. Opt. Commun.
**282**(13), 2656–2658 (2009)ADSCrossRefGoogle Scholar - 17.Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun.
**282**(2), 333–337 (2009)ADSMathSciNetCrossRefGoogle Scholar - 18.Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using greenberger-horne-zeilinger state. Opt. Commun.
**283**(1), 192–195 (2010)ADSCrossRefGoogle Scholar - 19.Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F., Ren, Y.-P., Liu, H.-W.: A revised controlled deterministic secure quantum communication with five-photon entangled state. Opt. Commun.
**283**(2), 344–347 (2010)ADSCrossRefGoogle Scholar - 20.Xiu, X.-M., Dong, L., Gao, Y.-J.: Secure four-site distribution and quantum communication of [chi]-type entangled states. Opt. Commun.
**284**(7), 2065–2069 (2011)ADSCrossRefGoogle Scholar - 21.Kao, S.-H., Tasi, C.-W., Hwang, T.: Enhanced multiparty controlled QSDC using Ghz state. Commun. Theor. Phys.
**55**(6), 1007 (2011)ADSCrossRefMATHGoogle Scholar - 22.Kao, S.-H., Tsai, C.-W., Hwang, T.: Comment on: supervisory asymmetric deterministic secure quantum communication. Int. J. Theor. Phys.
**51**(12), 3868–3875 (2012)MathSciNetCrossRefGoogle Scholar - 23.Tseng, H.-Y., Tsai, C.-W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys.
**51**(8), 2447–2454 (2012)MathSciNetCrossRefMATHGoogle Scholar - 24.Tsai, C.-W., Hsieh, C.-R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys.
**61**(3), 779–783 (2011)Google Scholar - 25.Haffner, H., Hansel, W., Roos, C.F., Benhelm, J., Chek-al kar, D., Chwalla, M., Korber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Guhne, O., Dur, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature
**438**(7068), 643–646 (2005)ADSCrossRefGoogle Scholar - 26.Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett.
**79**(17), 3306–3309 (1997)ADSCrossRefGoogle Scholar - 27.Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science
**290**(5491), 498–501 (2000)ADSCrossRefGoogle Scholar - 28.Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett.
**84**(11), 2525–2528 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar - 29.Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A
**63**(4), 042307 (2001)ADSCrossRefGoogle Scholar - 30.Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel. Laser Phys.
**24**(10), 105203 (2014)ADSCrossRefGoogle Scholar - 31.Kao, S.-H., Yang, C.-W., Hwang, T.: Fault-tolerant controlled quantum secure direct communication using greenberger–horne–zeilinger states against collective noises. In: Cryptology and Information Security Conference 2015 (CISC2015), National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, May 28–29 (2015)Google Scholar
- 32.Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process.
**14**(6), 2211–2225 (2015)ADSCrossRefMATHGoogle Scholar - 33.Hwang, T., Lin, T.-H., Kao, S.-H.: Quantum entanglement establishment between two strangers. Quantum Inf. Process.
**15**(1), 385–403 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar - 34.Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A
**72**(4), 044302 (2005)ADSCrossRefGoogle Scholar - 35.Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A
**74**(5), 054302 (2006)ADSCrossRefGoogle Scholar - 36.Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A
**351**(1–2), 23–25 (2006)ADSCrossRefMATHGoogle Scholar - 37.Wei, H., Qiao-Yan, W., Bin, L., Fei, G.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B
**24**(7), 070308 (2015)CrossRefGoogle Scholar - 38.Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing, pp. 175–179 (1984)Google Scholar
- 39.Li, C.-Y., Zhou, H.-Y., Wang, Y., Deng, F.-G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett.
**22**(5), 1049 (2005)ADSCrossRefGoogle Scholar - 40.Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: An external attack on the Brádler–Dušek protocol. J. Phys. B At. Mol. Opt. Phys.
**40**(24), 4661 (2007)ADSCrossRefMATHGoogle Scholar - 41.Gao, F., Lin, S., Wen, Q.-Y., Zhu, F.-C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett.
**25**(5), 1561 (2008)ADSCrossRefGoogle Scholar - 42.Qin, S.-J., Gao, F., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun.
**282**(19), 4014–4016 (2009)ADSCrossRefGoogle Scholar - 43.Lee, I.: Esl learners’ performance in error correction in writing: some implications for teaching. System
**25**(4), 465–477 (1997)CrossRefGoogle Scholar - 44.Zhang, Z.: Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory
**54**(1), 209–218 (2008)MathSciNetCrossRefMATHGoogle Scholar - 45.Clark Jr., G.C., Cain, J.B.: Error-correction coding for digital communications. Springer Science and Business Media, Berlin (2013)MATHGoogle Scholar
- 46.Candes, E., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear programming. In: Conference Proceedings on 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 668–681 (2005)Google Scholar
- 47.Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
**299**(5886), 802–803 (1982)ADSCrossRefGoogle Scholar