Advertisement

Quantum Information Processing

, Volume 15, Issue 9, pp 3761–3771 | Cite as

Lower bound on concurrence for arbitrary-dimensional tripartite quantum states

  • Wei Chen
  • Shao-Ming Fei
  • Zhu-Jun Zheng
Article

Abstract

In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary \(m\otimes n\otimes l\)-dimensional tripartite quantum states.

Keywords

Concurrence Lower bound of concurrence Tripartite quantum states Substates 

Notes

Acknowledgments

This project is supported by NSFC through Grants No. 11571119, 11405060, 11475178 and 11275131.

References

  1. 1.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4237 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Fei, S.M., Jost, J., Li-Jost, X.Q., Wang, G.F.: Entanglement of formation for a class of quantum states. Phys. Lett. A 310, 333 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fei, S.M., Li-Jost, X.Q.: A class of special matrices and quantum entanglement. Rep. Math. Phys. 53, 195 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fei, S.M., Wang, Z.X., Zhao, H.: A note on entanglement of formation and generalized concurrence. Phys. Lett. A 329, 414 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Mintert, F., Buchleitner, A., Kuś, M.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Gerjuoy, E.: Lower bound on entanglement of formation for the qubit-qudit system. Phys. Rev. A 67, 052308 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Ou, Y.C., Fan, H., Fei, S.M.: Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhao, M.J., Zhu, X.N., Fei, S.M., Li-Jost, X.Q.: Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states. Phys. Rev. A 84, 062322 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Li, X.S., Gao, X.H., Fei, S.M.: Lower bound of concurrence based on positive maps. Phys. Rev. A 83, 034303 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Mintert, F., Buchleitner, A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gao, X.H., Fei, S.M., Wu, K.: Lower bounds of concurrence for tripartite quantum systems. Phys. Rev. A 74, 050303 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Top. 159, 71 (2008)CrossRefGoogle Scholar
  30. 30.
    Yu, C.S., Song, H.S.: Measurable entanglement for tripartite quantum pure states of qubits. Phys. Rev. A 76, 022324 (2007)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhu, X.N., Zhao, M.J., Fei, S.M.: Lower bound of multipartite concurrence based on subquantum state decomposition. Phys. Rev. A 86, 022307 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Li, M., Fei, S.M., Wang, Z.X.: Bounds for multipartite concurrence. Rep. Math. Phys. 65, 289–296 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhu, X.N., Li, M., Fei, S.M.: Lower bounds of concurrence for multipartite states. Aip Conf. Proc. 1424, 77 (2012)Google Scholar
  34. 34.
    Zhu, X.N., Fei, S.M.: Lower bound of concurrence for qubit systems. Quantum Inform. Process. 13, 815–823 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chen, W., Zhu, X.N., Fei, S.M., Zheng, Z.J.: Lower bound of multipartite concurrence based on sub-partite quantum systems. arXiv:1501.02316 (2015)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Automation Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  4. 4.School of MathematicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations