Quantum Information Processing

, Volume 15, Issue 9, pp 3543–3572 | Cite as

Quantum image matching

  • Nan Jiang
  • Yijie Dang
  • Jian Wang


Quantum image processing (QIP) means the quantum-based methods to speed up image processing algorithms. Many quantum image processing schemes claim that their efficiency is theoretically higher than their corresponding classical schemes. However, most of them do not consider the problem of measurement. As we all know, measurement will lead to collapse. That is to say, executing the algorithm once, users can only measure the final state one time. Therefore, if users want to regain the results (the processed images), they must execute the algorithms many times and then measure the final state many times to get all the pixels’ values. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image matching algorithm. Unlike most of the QIP algorithms, our scheme interests only one pixel (the target pixel) instead of the whole image. It modifies the probability of pixels based on Grover’s algorithm to make the target pixel to be measured with higher probability, and the measurement step is executed only once. An example is given to explain the algorithm more vividly. Complexity analysis indicates that the quantum scheme’s complexity is \(O(2^{n})\) in contradistinction to the classical scheme’s complexity \(O(2^{2n+2m})\), where m and n are integers related to the size of images.


Quantum image processing Quantum computation Quantum image matching 



The authors thank Prof. Sabre Kais and Ph.d. Student Yudong Cao at Purdue University for their valuable suggestions.


  1. 1.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Denchev, V.S., Boixo, S., Isakov, S.V., et al.: What is the computational value of finite range tunneling? arXiv:1512.02206v4 (2016)
  3. 3.
    Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jiang, N., Wu, W.Y., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, H.S., Zhu, Q.X., Lan, S., Shen, C.Y., Zhou, R.G., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authenticationof quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theory Phys. 52, 504–513 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 2014(20), 379–388 (2014)CrossRefGoogle Scholar
  22. 22.
    Jiang, N., Wang, L.: A quantum image information hiding algorithm based on Moir\(\acute{e}\) pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)CrossRefGoogle Scholar
  23. 23.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II(298), 243–250 (2014)Google Scholar
  25. 25.
    Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)CrossRefMATHGoogle Scholar
  26. 26.
    Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recogn. 321, 480–487 (2012)Google Scholar
  27. 27.
    Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zitová, Barbara, Flusser, Jan: Image registration methods: a survey. Image Vision Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)Google Scholar
  32. 32.
    Genovese, M.: Real applications of quantum imaging. arXiv:1601.06066v1, pp. 1–18 (2016)
  33. 33.
    Sun, J.G., He, Y.G.: A quantum search algorithm. J. Softw. 14(3), 334–344 (2003)MathSciNetMATHGoogle Scholar
  34. 34.
    Yang, Y.G., Zhao, Q.Q., Sun, S.J.: Novel quantum gray-scale image matching. Optik 126, 3340–3343 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, F., Duan, H.B., Deng, Y.M.: A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Optik 123, 1955–1960 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Mezghiche, K.M., Melkemi, K.E., Foufou, S.: Matching with quantum genetic algorithm and shape contexts. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 536–542 (2014)Google Scholar
  37. 37.
    Curtis, D., Meyer, D.A.: Towards quantum template matching. In: Proceedings on SPIE 5161, Quantum Communications and Quantum Imaging, pp. 134–141 (2004)Google Scholar
  38. 38.
    Mastriani, M.: Quantum image processing? arXiv:1512.02942, pp. 1–28 (2015)
  39. 39.
    Mastriani, M.: Quantum Boolean image denoising. Springer Quantum Inf. Process. 14(5), 1647–1673 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Computer ScienceBeijing University of TechnologyBeijingChina
  2. 2.School of Computer and Information TechnologyBeijing Jiaotong UniversityBeijingChina
  3. 3.College of SciencePurdue UniversityWest LafayetteUSA
  4. 4.Beijing Key Laboratory of Trusted ComputingBeijingChina
  5. 5.National Engineering Laboratory for Critical Technologies of Information Security Classified ProtectionBeijingChina

Personalised recommendations