Quantum Information Processing

, Volume 15, Issue 9, pp 3677–3694 | Cite as

Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries

  • Xiaobao Liu
  • Zehua Tian
  • Jieci Wang
  • Jiliang Jing


We study, in the paradigm of open quantum systems, the dynamics of quantum coherence of a static polarizable two-level atom which is coupled with a thermal bath of fluctuating electromagnetic field in the absence and presence of boundaries. The purpose was to find the conditions under which the decoherence can be inhibited effectively. We find that without boundaries, quantum coherence of the two-level atom inevitably decreases due to the effect of thermal bath. However, the quantum decoherence, in the presence of a boundary, could be effectively inhibited when the atom is transversely polarizable and near this boundary. In particular, we find that in the case of two parallel reflecting boundaries, the atom with a parallel dipole polarization at arbitrary location between these two boundaries will be never subjected to decoherence provided we take some special distances for the two boundaries.


Inhibit decoherence Thermal bath Reflecting boundary Open quantum systems 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11475061 and 11305058; the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y5KF161CJ1).


  1. 1.
    Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277–279 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)MATHGoogle Scholar
  5. 5.
    Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A. 90(6), 062110 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79(2), 555–609 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lostagio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015)Google Scholar
  9. 9.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Dobrzanski, R.D., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014)CrossRefGoogle Scholar
  13. 13.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113(17), 170401 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Prress, Oxford (2002)MATHGoogle Scholar
  16. 16.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, J.C., Jing, J.L.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(3), 032324 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tian, Z.H., Jing, J.L.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707(2), 264–271 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. arXiv: 1601.03238
  21. 21.
    Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Tian, Z.H., Jing, J.L.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1–13 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Cianciaruso, M., Bromley, T.R., Roga, W., Franco, R.L., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Silva, A., et al.: Observation of time-invariant coherence in a room temperature quantum simulator. arxiv: 1511.01971
  27. 27.
    Man, Z.X., Xia, Y.J., Franco, R.L.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Franco, R.L.: Switching quantum memory on and off. New J. Phys. 17, 072001 (2015)CrossRefGoogle Scholar
  29. 29.
    Man, Z.X., Xia, Y.J., Franco, R.L.: Harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(1), 012315 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Brito, F., Werlang, T.: A knob for Markovianity. New J. Phys. 17, 081004 (2015)CrossRefGoogle Scholar
  31. 31.
    Rodriguez, F.J., Quiroga, L., Tejedor, C., Martin, M.D., Vina, L., Andre, R.: Control of non-Markovian effects in the dynamics of polaritons in semiconductor microcavities. Phys. Rev. B 78(3), 035312 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Tudela, A.G., Rodriguez, F.J., Quiroga, L., Tejedor, C.: Dissipative dynamics of a solid-state qubit coupled to surface plasmons: from non-Markov to Markov regimes. Phys. Rev. B 82(11), 115334 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14(4), 1305–1320 (2015)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65(2), 020302 (2016)MathSciNetGoogle Scholar
  35. 35.
    Xiao, X.Q., Xiao, J.F., Ren, Y., Li, Y., Ji, C.L., Huang, X.G.: Remote state preparation of a two-atom entangled state in cavity QED. Int. J. Theor. Phys. 55(6), 2764–2772 (2016)CrossRefMATHGoogle Scholar
  36. 36.
    Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atoms. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  37. 37.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in markovian dissipative dynamics. Phys. Rev. Lett. 91(7), 070402 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: an image solution. Phys. Rev. 184(5), 1272–1279 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    Yu, H.W., Chen, J., Wu, P.X.: Brownian motion of a charged test particle near a reflecting boundary at finite temperature. J. High Energy Phys. 02, 058 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefMATHGoogle Scholar
  43. 43.
    Meschede, D., Jhe, W., Hinds, E.A.: Radiative properties of atoms near a conducting plane: an old problem in a new light. Phys. Rev. A 41(3), 1587–1596 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    Martini, F.D., Marrocco, M., Mataloni, P., Crescentini, L., Loudon, R.: Spontaneous emission in the optical microscopic cavity. Phys. Rev. A 43(5), 2480–2497 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaobao Liu
    • 1
  • Zehua Tian
    • 2
  • Jieci Wang
    • 1
  • Jiliang Jing
    • 1
  1. 1.Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Institute of Theoretical PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations