Skip to main content
Log in

PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univeristy Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, pp. 212–219

  4. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. CoRR. arXiv:1304.3390

  5. Intelligence advanced research projects activity (iarpa): Quantum Computer Science (QCS) Program

  6. Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4, 10 (2013)

    Article  Google Scholar 

  7. Suchara, M., Faruque, A., Lai, C.Y., Paz, G., Chong, J., Kubiatowicz, J.: arXiv:1312.2316, 17 pp (2013)

  8. Clark, C.R., Metodi, T.S., Gasster, S.D., Brown, K.R.: Resource requirements for fault-tolerant quantum simulation: the ground state of the transverse using model. Phys. Rev. A 79, 062314 (2009)

    Article  ADS  Google Scholar 

  9. Jones, N.C., Van Meter, R., Austin, G.F., Peter L, M.M., Jungsang, K., Thaddeus D, L., Yoshihisa, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)

  10. Johansson, J.R., Nation, P.D., Nori, F.: Qutip 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

    Article  ADS  Google Scholar 

  11. Johansson, J.R., Nation, P.D., Nori, F.: Qutip: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)

    Article  ADS  Google Scholar 

  12. Quantiki.org. List of qc simulators.(2015)

  13. Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. N. J. Phys. 12(7), 075008 (2010)

    Article  Google Scholar 

  14. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Khodjasteh, K., Viola, L.: Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501 (2009)

    Article  ADS  Google Scholar 

  16. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Khodjasteh, K., Viola, L.: Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A 80, 032314 (2009)

    Article  ADS  Google Scholar 

  18. Kabytayev, C., Green, T.J., Khodjasteh, K., Biercuk, M.J., Viola, L., Brown, K.R.: Robustness of composite pulses to time-dependent control noise. Phys. Rev. A 90, 012316 (2014)

    Article  ADS  Google Scholar 

  19. Khodjasteh, K., Bluhm, H., Viola, L.: Automated synthesis of dynamically corrected quantum gates. Phys. Rev. A 86, 042329 (2012)

    Article  ADS  Google Scholar 

  20. Ho, T.-S., Dominy, J., Rabitz, H.: Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79, 013422 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rabitz, H., Hsieh, M., Rosenthal, C.: Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72, 052337 (2005)

    Article  ADS  Google Scholar 

  22. Hsieh, M., Rabitz, H.: Optimal control landscape for the generation of unitary transformations. Phys. Rev. A 77, 042306 (2008)

    Article  ADS  Google Scholar 

  23. Hsieh, M., Rebing, W., Rabitz, H.: Topology of the quantum control landscape for observables. J. Chem. Phys. 130(10), 104109 (2009)

    Article  ADS  Google Scholar 

  24. Rabitz, H., Ho, T.-S., Hsieh, M., Kosut, R., Demiralp, M.: Topology of optimally controlled quantum mechanical transition probability landscapes. Phys. Rev. A 74, 012721 (2006)

    Article  ADS  Google Scholar 

  25. Kosut, R.L., Grace, M.D., Brif, C.: Robust control of quantum gates via sequential convex programming. Phys. Rev. A 88, 052326 (2013)

    Article  ADS  Google Scholar 

  26. Suzuki, M.: General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A 165, 387–395 (1992)

  27. Merrill, J.T., Brown, K.R.: Progress in Compensating Pulse Sequences for Quantum Computation. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  28. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quant. Inf. Comp. 6, 81–95 (2006)

    MathSciNet  Google Scholar 

  29. Bruer, H.-P.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  30. Brockwell, P.J., Davis, R.J.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  31. Hocker, D., Brif, C., Grace, M.D., Donovan, A., Ho, T.-S., Tibbetts, K.M., Wu, R., Rabitz, H.: Characterization of control noise effects in optimal quantum unitary dynamics. Phys. Rev. A 90, 062309 (2014)

    Article  ADS  Google Scholar 

  32. Sorber, L., Kron: MATLAB Central File Exchange. Retrieved 2013 (2011)

  33. Iglin, S.: Grtheory. 2004. MATLAB Central File Exchange. Retrieved (2013)

  34. Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)

    Article  ADS  Google Scholar 

  35. Rothman, A., Ho, T.-S., Rabitz, H.: Observable-preserving control of quantum dynamics over a family of related systems. Phys. Rev. A 72, 023416 (2005)

    Article  ADS  Google Scholar 

  36. Rothman, A., Ho, T.-S., Rabitz, H.: Exploring the level sets of quantum control landscapes. Phys. Rev. A 73, 053401 (2006)

    Article  ADS  Google Scholar 

  37. Moore, K.W., Chakrabarti, R., Riviello, G., Rabitz, H.: Search complexity and resource scaling for the quantum optimal control of unitary transformations. Phys. Rev. A 83, 012326 (2011)

    Article  ADS  Google Scholar 

  38. Rabitz, H.A., Hsieh, M.M., Rosenthal, C.M.: Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004)

    Article  ADS  Google Scholar 

  39. Khodjasteh, K., Lidar, D.A., Viola, L.: Arbitrarily accurate dynamical control in open quantum systems. Phys. Rev. Lett. 104, 090501 (2010)

    Article  ADS  Google Scholar 

  40. Hocker, D., Zheng, Y., Kosut, R., Brun, T., Rabitz, H.: Survey of control performance in quantum information processing. Quant. Inf. Proc. (submitted)

  41. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  42. Saffman, M., Walker, T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  43. Schwabl, F.: Quantum Mechanics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  44. Stark, H., Woods, J.W.: Probability, Random Processes, and Estimation Theory for Engineers. Prentice Hall, Englewood Cliffs, NJ (1986)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the (D.H.) National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE 1148900), (H.R.for the basic concepts) National Science Foundation (CHE-1058644) and (R.K.) ARO-MURI (W911NF-11-1-2068). This work was also supported by the (R.K.) (H.R. for the illustrations) Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center Contract No. D11PC20165. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hocker.

Additional information

This article is part of topical collection on Quantum Computer Science.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 180 KB)

Appendix

Appendix

1.1 Gate and GateSequence properties and methods

See Table 6.

Table 6 Additional methods

1.2 Calculation of the process matrix

Propagation to calculate \(\chi _{{\mathcal {E}}}\) is performed by first transforming Eq. (1) into a set of differential equations for the matrix elements of \(\rho \) in Liouville space. This restructures the system dynamics into a Hilbert space of dimension \(N^2\) and allows for succinct calculation of process matrices through an evolution superoperator \({\mathcal {L}}\). First, vectorizing \(\rho \) columnwise to \(\mathbf {\rho }\) yields [29],

$$\begin{aligned} \mathbf {\rho } = \left[ \rho _{11}, \rho _{21},\ldots \rho _{N1}, \rho _{12} \ldots \ldots \rho _{NN} \right] ^T. \end{aligned}$$
(41)

By observing the action of operators M on \(\rho \), analogous operations transform upon this vectorization to

$$\begin{aligned} M\rho\Rightarrow & {} (I \otimes M) \mathbf {\rho } \end{aligned}$$
(42)
$$\begin{aligned} \rho M\Rightarrow & {} (M^{T}\otimes I) \mathbf {\rho }, \end{aligned}$$
(43)

and the Linblad equation can be reformulated as

$$\begin{aligned} \frac{\partial }{\partial t} \mathbf {\rho }(t)= & {} {\mathcal {L}}(t) \mathbf {\rho }(t) \nonumber \\= & {} \left( -\frac{i}{\hbar }\left[ I \otimes H(t) - H^{T}(t) \otimes I \right] +\right. \nonumber \\&\left. \sum _i^P \frac{1}{T_1} \left[ \sigma _{+}^{*(i)} \otimes \sigma _{+}^{(i)} - \frac{1}{2} I \otimes \sigma _{+}^{\dag (i)}\sigma _{+}^{(i)} - \frac{1}{2} \sigma _{+}^{\dag (i)}\sigma _{+}^{(i)} \otimes I \right] \right. \nonumber \\&\left. \sum _i^M \frac{1}{T_{\phi }}\left[ \sigma _z^{*(i)} \otimes \sigma _z^{(i)} - \frac{1}{2} I \otimes \sigma _z^{\dag (i)}\sigma _z^{(i)} - \frac{1}{2} \sigma _z^{\dag (i)}\sigma _z^{(i)} \otimes I \right] \right) \mathbf {\rho }(t).\nonumber \\ \end{aligned}$$
(44)

The density matrix \(\mathbf {\rho }(t)\) is calculated by exponentiation of the time-dependent superoperator \({\mathcal {L}}(t)\) as

$$\begin{aligned} \mathbf {\rho }(t) = {\hat{\mathcal {T}}} \exp \left( \int _0^t {\mathcal {L}}(s) \mathrm{d}s \right) \mathbf {\rho }(0), \end{aligned}$$
(45)

where \({\hat{\mathcal {T}}}\) is the time-ordering operator [43]. Gate operation dynamics are discretized over \(N_t\) points on an interval of [0, T] with resolution \(\varDelta t\). For reasonably small \(\varDelta t\), short-time propagation methods accurately describe propagation of \(\mathbf {\rho }\),

$$\begin{aligned} \mathbf {\rho }(t+\varDelta t)= & {} \exp \left( {\mathcal {L}}(t+\varDelta t) \varDelta t \right) \mathbf {\rho }(t)\\ \mathbf {\rho }(T)= & {} \chi _{{\mathcal {E}}} \mathbf {\rho }(0) \nonumber \end{aligned}$$
(46)
$$\begin{aligned}= & {} \varPi _{j=1}^{N_t} \exp \left( {\mathcal {L}}(j\varDelta t) \varDelta t \right) \mathbf {\rho }(0), \end{aligned}$$
(47)

where the initial process matrix propagator is the \(N^2 \times N^2\) identity

$$\begin{aligned} \exp \left( {\mathcal {L}}(0) \varDelta t \right) = {\mathbb {I}}_{N^2}. \end{aligned}$$
(48)

The process matrix propagates to yield \(\mathbf {\rho }(T)\) , and its final-time form used in J is simply

$$\begin{aligned} \chi _{{\mathcal {E}}} = \varPi _{j=1}^{N_t} \exp \left( {\mathcal {L}}(j \varDelta t) \varDelta t \right) . \end{aligned}$$
(49)

1.3 Noise generation

Generating random instances of noise following a given noise correlation function are generated in PEET with a Karhunen-Loéve (KL) filter [44]. Representing a disturbance \(\delta \beta (t)\) over discrete time points \(t_i\) for \(i = 1,2,... N_t\) , the finite-dimensional noise correlation matrix \(R(t_i,t_j)\) is first diagonalized,

$$\begin{aligned} R = M\varLambda M^{\dag }, \end{aligned}$$
(50)

where M is an orthonormal matrix with column vectors being the eigenvectors of R and \(\varLambda \) is the diagonal eigenvalue matrix. The correlation matrix of a random time vector \(\mathbf {x}\) (i.e., Matlab’s rand routine) drawn from a normal distribution of zero mean and standard deviation equal to 1 is given by a delta function, \(R_x(t_i,t_j) = \langle \mathbf {x}(t_i),\mathbf {x}(t_j) \rangle = \delta _{i,j}\), and can be used to construct the discretized noise signal \(\beta (t) \rightarrow \mathbf {\delta \beta }(t_i)\) as

$$\begin{aligned} \mathbf {\delta \beta }(t_i) = \sum _{k=1}^{N_t} {\hat{x}}(t_k)\sqrt{\varLambda _{kk}}M_{ki}^{\dag }. \end{aligned}$$
(51)

where \(\mathbf {\delta \beta }(t_i)\) possesses the appropriate noise correlation function,

$$\begin{aligned} \langle \mathbf {\delta \beta }(t_i) \mathbf {\delta \beta }(t_j) \rangle= & {} \sum _{l,k} \langle M_{i,l} \sqrt{\varLambda _{ll}} \mathbf{x}(t_l)\mathbf{x}(t_k)\sqrt{\varLambda _{kk}}M_{k,j}^{\dag } \rangle \nonumber \\= & {} \sum _{l,k} M_{i,l}\sqrt{\varLambda _{ll}} \sqrt{\varLambda _{kk}}M_{k,j}^{\dag } \langle \mathbf{x}(t_l),{\mathbf{x}_k}(t_k) \rangle \nonumber \\= & {} \sum _{k} M_{i,k}\varLambda _{kk} M_{k,j}^{\dag } \nonumber \\= & {} R(t_i,t_j). \end{aligned}$$
(52)

The KL filter is a useful for “shot-to-shot” noise that only endures for a single gate. Scaling this method to background noise over an entire GateSequence though, leads to difficulties storing and diagonalizing the correlation matrix. In contrast, for simple noise forms a frequency mask \(g(\omega )\) is applied to white noise to generate low-frequency noise, 1 / f noise, etc,

$$\begin{aligned} z(t) = {\mathcal {F}}^{-1}\left[ g(\omega ) {\mathcal {F}}\left[ x(t) \right] \right] , \end{aligned}$$
(53)

where \({\mathcal {F}}[\cdot ]\) is the Fourier transform, as in Eq. (3).

1.4 Hamiltonian types

Below are descriptions of the Hamiltonians for the supported type specifiers, their cont specification, and corresponding noise terms.

type=’l1st’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t) =\frac{\omega + \delta \omega (t)}{2} Z + (1+\delta c_2(t))[c(t)+\delta c_1(t)] \mu \end{aligned}$$
    (54)
  • cont: \(1\times N_t\) vector \(\rightarrow c(t)\)

  • system noise: \(\delta \omega (t)\)

  • additive control noise: \(\delta c_1(t)\)

  • multiplicative control noise: \(\delta c_2(t)\)

type=’l1rt’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t) = \frac{(1+\delta A_2(t))[A(t)+\delta A_1(t)]}{2}\left( \begin{array}{c c} 0 &{} \quad e^{-\frac{i}{\hbar }\delta \omega (t) t -i \phi }\\ e^{\frac{i}{\hbar } \delta \omega (t) t +i \phi } &{} \quad 0\\ \end{array} \right) . \end{aligned}$$
    (55)
  • cont: \(1\times N_t+1\) vector \(\rightarrow [A(t),\phi ]\)

  • system noise: \(\delta \omega (t)\)

  • additive control noise: \(\delta A_1(t)\)

  • multiplicative control noise: \(\delta A_2(t)\)

type=’lqst’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t) =\sum _i^M\frac{\omega _i+ \delta \omega _i(t)}{2} Z + (1+\delta c_{i,2}(t))[c_i(t)+\delta c_{i,1}(t)] \mu _i \end{aligned}$$
    (56)
  • cont: \(1\times N_t*M\) vector \(\rightarrow [c_1(t),c_2(t),...c_M(t)]\)

  • system noise: \([\delta \omega _1(t),\delta \omega _2(t),...\delta \omega _M(t)]\)

  • additive control noise: \([\delta c_{1,1}(t),\delta c_{2,1}(t),...\delta c_{M,1}(t)]\)

  • multiplicative control noise: \([\delta c_{1,2}(t),\delta c_{2,2}(t),...\delta c_{M,2}(t)]\)

type=’ldst’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t)= & {} \left( \begin{array}{lllc} E_1 + \delta E_1(t) &{} 0 &{} 0 &{} \quad 0\\ 0 &{} E_2 + \delta E_2(t) &{} 0 &{} \quad 0\\ \vdots &{} &{} \ddots &{} \quad \vdots \\ 0 &{} 0 \ldots &{} &{} E_N + \delta E_N(t) \\ \end{array} \right) + \nonumber \\&\quad (1+\delta c_2(t))[c(t)+\delta c_1(t)] \mu \end{aligned}$$
    (57)
  • cont: \(1\times N_t\) vector \(\rightarrow c(t)\)

  • system noise: \(\rightarrow [\delta E_1(t),\delta E_2(t),...\delta E_N(t)]\)

  • additive control noise: \(\delta c_1(t)\)

  • multiplicative control noise: \(\delta c_2(t)\)

type=’lgst’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t)= & {} \left( \begin{array}{lllc} E_1 + \delta E_1(t) &{} 0 &{} 0 &{} \quad 0\\ 0 &{} E_2 + \delta E_2(t) &{} 0 &{} \quad 0\\ \vdots &{} &{} \ddots &{} \quad \vdots \\ 0 &{} 0 \ldots &{} &{}E_N + \delta E_N(t) \\ \end{array} \right) + \nonumber \\&\quad \sum _i^M (1+\delta c_{i,2}(t))[c(t)+\delta c_{i,1}(t)] \mu _i \end{aligned}$$
    (58)
  • cont: \(1\times N_t*M\) vector \(\rightarrow [c_1(t),c_2(t),...c_M(t)]\)

  • system noise: \(\rightarrow [\delta E_1(t),\delta E_2(t),...\delta E_N(t)]\)

  • additive control noise: \([\delta c_{1,1}(t),\delta c_{2,1}(t),...\delta c_{M,1}(t)]\)

  • multiplicative control noise: \([\delta c_{1,2}(t),\delta c_{2,2}(t),...\delta c_{M,2}(t)]\)

type=’lgsp’:

  • Hamiltonian

    $$\begin{aligned} {\tilde{H}}(t)= & {} \left( \begin{array}{lllc} E_1 + \delta E_1(t) &{} 0 &{} 0 &{} \quad 0\\ 0 &{} E_2 + \delta E_2(t) &{} 0 &{} \quad 0\\ \vdots &{} &{} \ddots &{} \quad \vdots \\ 0 &{} 0 \ldots &{} &{} E_N + \delta E_N(t) \\ \end{array} \right) +\nonumber \\&\quad \sum _i^M (1+\delta c_{i,2}(t))[c[\lambda _j](t)+\delta c_{i,1}(t)] \mu _i \end{aligned}$$
    (59)
  • cont: \(1\times Q\) vector \(\rightarrow [\lambda _1, \lambda _2,...\lambda _Q]\)

  • system noise: \(\rightarrow [\delta E_1(t),\delta E_2(t),...\delta E_N(t)]\)

  • additive control noise: \([\delta c_{1,1}(t),\delta c_{2,1}(t),...\delta c_{M,1}(t)]\)

  • multiplicative control noise: \([\delta c_{1,2}(t),\delta c_{2,2}(t),...\delta c_{M,2}(t)]\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocker, D., Kosut, R. & Rabitz, H. PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems. Quantum Inf Process 15, 3489–3518 (2016). https://doi.org/10.1007/s11128-016-1337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1337-5

Keywords

Navigation