Advertisement

Quantum Information Processing

, Volume 15, Issue 8, pp 3243–3256 | Cite as

Protecting quantum entanglement and correlation by local filtering operations

  • Chunyu Huang
  • Wenchao Ma
  • Liu Ye
Article

Abstract

In this work, the protection of different quantum entanglement and correlation is explored by local filtering operations. The results show that the filtering operations can indeed be useful for combating amplitude-damping decoherence and recovering the quantum entanglement and correlation. In this scheme, although the final states satisfy the quantum entanglement and correlation, the corresponding initial noisy states does not satisfy them, which means that the filtering operations can reveal the hidden genuine quantum entanglement and correlation of these initial noisy states.

Keywords

Concurrence Bell non-locality Quantum discord Amplitude damping Local filtering operations 

Notes

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 61275119 and 11575001, and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Fuchs, C.A., Gisin, N.R., Griffiths, B., Niu, C.S., Peres, A.: Phys. Rev. A 56, 1163 (1997)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zurek, W.H.: Phys. Rev. A 67, 012320 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Dillenschneider, R., Lutz, E.: Europhys. Lett. 88, 50003 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Sarandy, M.S.: Phys. Rev. A 80, 022108 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, J.C., Deng, J.F., Jing, J.L.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A. 81, 052120 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Barenco, A.: Quantum physics and computers. Contemp. Phys. 37, 375 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Aolita, L., Chaves, R., Cavalcanti, D., Acin, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Borras, A., Majtey, A.P., Plastino, A.R., Casas, M., Plastino, A.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Aolita, L., Cavalcanti, D., Acin, A., Salles, A., Tiersch, M., Buchleitner, A., DeMelo, F.: Scalability of Greenberger-Horne-Zeilinger and random-state entanglement in the presence of decoherence. Phys. Rev. A 79, 032322 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Ma, W.C., Xu, S., He, J., Shi, J., Ye, L.: Probing the entanglement distillability responses to the Unruh effect and prepared states. Quantum Inf. Process 14, 1411–1428 (2015)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature (London) 409, 1014 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Miyake, A., Briegel, H.J.: Distillation of multipartite entanglement by complementary stabilizer measurements. Phys. Rev. Lett. 95, 220501 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Siomau, M., Kamli, A.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Dür, W., Aschauer, H., Briegel, H.J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Kruszynska, C., Miyake, A., Briegel, H.J., Dür, W.: Entanglement purification protocols for all graph states. Phys. Rev. A 74, 052316 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Aschauer, H., Dür, W., Briegel, H.J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 71, 012319 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Huber, M., Plesch, M.: Purification of genuine multipartite entanglement. Phys. Rev. A 83, 062321 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Xu, S., He, J., Song, X., Shi, J., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process. 14, 755–764 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    David, L., Eduardo, M.M., Achim, K.: Perfect Zeno-like effect through imperfect measurements at a finite frequency. Phys. Rev. A 91, 022106 (2015)CrossRefGoogle Scholar
  34. 34.
    Moiseev, S.A., Skrebnev, V.A.: Short-cycle pulse sequence for dynamical decoupling of local fields and dipole–dipole interactions. Phys. Rev. A 91, 022329 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B At. Mol. Opt. Phys. 44, 165509 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Effect of local filtering on freezing phenomena of quantum correlation. Quantum Inf. Process. 14, 2517–2533 (2015)ADSCrossRefMATHGoogle Scholar
  37. 37.
    Yu, Y., Ye, L.: Protecting entanglement from amplitude damping in non-inertial frames by weak measurement and reversal. Quantum Inf. Process. 14, 321–335 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Horodecki, R., Horodecki, P., Horodecki, M.: Phys. Lett. A 200, 340 (1995)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Horodecki, R.: Phys. Lett. A 210, 223 (1996)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Ghosh, S., Kar, G., De, A.S., Sen, U.: Phys. Rev. A 64, 044301 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Jakob, M., Abranyos, Y., Bergou, J.A.: Phys. Rev. A 66, 022113 (2002)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Jakóbczyk, L., Jamróz, A.: Phys. Lett. A 318, 318 (2003)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Ma, W.C., Xu, S., Shi, J., Ye, L.: Quantum correlation versus Bell-inequality violation under the amplitude damping channel. Phys. Lett. A 379, 2802–2807 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open System-Classical and Quantum Approach. Kluwer Academic, Dordrecht (1997)CrossRefMATHGoogle Scholar
  47. 47.
    Cerf, N.J., Adami, C.: Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Material ScienceAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations