Quantum Information Processing

, Volume 15, Issue 8, pp 3223–3241 | Cite as

Protecting coherence by reservoir engineering: intense bath disturbance



We put forward a scheme based on reservoir engineering to protect quantum coherence from leaking to bath, in which we intensely disturb the Lorentzian bath by N harmonic oscillators. We show that the intense disturbance changes the spectrum of the bath and reduces the qubit–bath interaction. Furthermore, we give the exact time evolution with the Lorentzian spectrum by a master equation and calculate the concurrence and survival probability of the qubits to demonstrate the effect of the intense bath disturbance on the protection of coherence. Meanwhile, we reveal the dynamic effects of counter-rotating interaction on the qubits as compared to the results of the rotating-wave approximation.


Reservoir engineering Quantum dynamics Lorentzian spectrum Spin–boson model 



This work was supported by the National Natural Science Foundation of China (Grants No. 11174198, 11374208, 91221201, and 11474200) and the National Basic Research Program of China (Grant No. 2011CB922202). The work was partially supported by the Shanghai Jiao Tong University SMC-Youth Foundation.


  1. 1.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935). (823; 844)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Jing, J., Wu, L.-A.: Control of decoherence with no control. Sci. Rep. 3, 2746 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zheng, H., Zhu, S.Y., Zubairy, M.S.: Quantum Zeno and anti-Zeno effects: without the rotating-wave approximation. Phys. Rev. Lett. 101, 200404 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Miranowicz, A., Bajer, J., Paprzycka, M., Liu, Y.X., Zagoskin, A.M., Nori, F.: State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A 90, 033831 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Kienzler, D., Lo, H.-Y., Keitch, B., de Clercq, L., Leupold, F., Lindenfelser, F., Marinelli, M., Negnevitsky, V., Home, J.P.: Quantum harmonic oscillatorstate synthesis by reservoir engineering. Science 347, 6217 (2015)CrossRefGoogle Scholar
  15. 15.
    Mihokova, E., Pascazio, S., Schulman, L.S.: Hindered decay: quantum Zeno effect through electromagnetic field domination. Phys. Rev. A 56, 25 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Facchi, P., Pascazio, S.: Spontaneous emission and lifetime modification caused by an intense electromagnetic field. Phys. Rev. A 62, 023804 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    Ficek, Z., Jing, J., Lü, Z.G.: Role of the counter-rotating terms in the creation of entanglement between two atoms. Phys. Scr. T140, 014005 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Cao, X.F., Zheng, H.: Non-Markovian disentanglement dynamics of a two-qubit system. Phys. Rev. A 77, 022320 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, D.W., Li, Z.H., Zheng, H., Zhu, S.Y.: Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms. Phys. Rev. A 81, 043819 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, C., Chen, Q.H.: Exact dynamics of quantum correlations of two qubits coupled to bosonic baths. New J. Phys. 15, 103020 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    da Costa, M.Rosenau, Caldeira, A.O., Dutra, S.M., Westfahl Jr., H.: Exact diagonalization of two quantum models for the damped harmonic oscillator. Phys. Rev. A 61, 022107 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Didier, N., Pugnetti, S., Blanter, Y.M., Fazio, R.: Detecting phonon blockade with photons. Phys. Rev. B 84, 054503 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Massel, F., Cho, S.U., Pirkkalainen, J.-M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Scully, M.S., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  29. 29.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle System. Dover Publications, New York (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations