Advertisement

Quantum Information Processing

, Volume 15, Issue 7, pp 3005–3034 | Cite as

Effects of a scalar scaling field on quantum mechanics

  • Paul Benioff
Article
  • 86 Downloads

Abstract

This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

Keywords

Scalar scaling fields Entangled quantum states Mathematical structures Fiber bundles 

Notes

Acknowledgments

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.

References

  1. 1.
    Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13(1), (1960). Reprinted in Wigner, E., Symmetries and Reflections, pp. 222–237. Indiana Univ. Press, Bloomington (1966)Google Scholar
  2. 2.
    Omnes, R.: Wigner’s unreasonable effectiveness of mathematics, revisited. Found. Phys. 41, 1729–1739 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Plotnitsky, A.: On the reasonable and unreasonable effectiveness of mathematics in classical and quantum physics. Found. Phys. 41, 466–491 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tegmark, M.: The mathematical universe. Found. Phys. 38, 101–150 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benioff, P.: Towards a coherent theory of physics and mathematics. Found. Phys. 32, 989–1029 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benioff, P.: Towards a coherent theory of physics and mathematics: the theory–experiment connection. Found. Phys. 35, 1825–1856 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Benioff, P.: Gauge theory extension to include number scaling by boson field: effects on some aspects of physics and geometry. In: Tremblay, I. (ed) Recent Developments in Bosons Research, Chapter 3, Nova publishing Co. (2013). arXiv:1211.3381
  8. 8.
    Benioff, P.: Fiber bundle description of number scaling in gauge theory and geometry. Quantum Stud. Math. Found. 2, 289–313 (2015). arXiv:1412.1493 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shapiro, S.: Mathematical Objects. In: Gold, B., Simons, R. (eds.) Proof and Other Dilemmas, Mathematics and Philosophy, Spectrum Series, Chapter III, pp. 157–178. Mathematical Association of America, Washington (2008)Google Scholar
  11. 11.
    Barwise, J.: An introduction to first order logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 5–46. North-Holland Publishing Co., New York (1977)CrossRefGoogle Scholar
  12. 12.
    Keisler, H.J.: Fundamentals of model theory. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 47–104. North-Holland Publishing Co., New York (1977)CrossRefGoogle Scholar
  13. 13.
    Czachor, M.: Relativity of arithmetics as a fundamental symmetry of physics. arXiv:1412.8583
  14. 14.
    Husemöller, D.: Fibre Bundles, Second Edition, Graduate Texts in Mathematics, vol. 20. Springer, New York (1975)Google Scholar
  15. 15.
    Husemöller, D., Joachim, M., Jurco, B., Schottenloher, M.: Basic bundle theory and K-cohomology invariants. In: Lecture Notes in Physics, 726, Springer, Berlin (2008). doi: 10.1007/978-3-540-74956-1, e-book
  16. 16.
    Daniel, M., Vialet, G.: The geometrical setting of gauge theories of the Yang Mills type. Rev. Mod. Phys. 52, 175–197 (1980)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Drechsler, W., Mayer, M.: Fiber bundle techniques in gauge theories. In: Springer Lecture Notes in Physics #67. Springer, Berlin (1977)Google Scholar
  18. 18.
    Moylan, P.: Fiber bundles in nonrelativistic quantum mechanics. Fortschr. Phys. 28, 269–284 (1980)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sen, R., Sewell, G.: Fiber bundles in quantum physics. J. Math. Phys. 43, 1323–1339 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bernstein, H., Phillips, A.: Fiber Bundles and Quantum Theory. Sci. Am. (1981)Google Scholar
  21. 21.
    Iliev, B.: Fiber bundle formulation of nonrelativistic quantum mechanics. arXiv:quant-ph/0004041
  22. 22.
    Asorey, M., Carinena, J., Paramio, M.: Quantum evolution as a parallel transport. J. Math. Phys. 23(8), 1451–1458 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Benioff, P.: Effects on quantum physics of the local availability of mathematics and space time dependent scaling factors for number systems. In: Cotaescu, I. (ed.) Quantum Theory, Chapter 2 (2012). Intech open access publisher. arXiv:1110.1388
  24. 24.
    Shoenfield, J.: Mathematical Logic. Addison Weseley Publishing Co. Inc, Reading (1967). (Wikipedia: Complex Numbers)MATHGoogle Scholar
  25. 25.
    Hewitt, E., Stromberg, K.: Real and Abstract Analysis, Chap. I, Sect. 5. Springer, New York (1965)CrossRefGoogle Scholar
  26. 26.
    Benioff, P.: Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory. In: Donkor, E. , Pirich, A., Hayduk, M. (eds.) Quantum Information and Computation XIII, Proceedings of SPIE, vol. 9500. SPIE, Bellingham (2015). arXiv:1503.05600
  27. 27.
    Montvay, I., Münster, G.: Quantum Fields on a Lattice, Chapter 3. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  28. 28.
    Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Albrecht, A., Steinhardt, P.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    Saravani, M., Aslanbeigi, S.: Dark matter from spacetime nonlocality. arXiv:1502.01655
  31. 31.
    Li, M., Li, X-D., Wang, S., Wang, Y.: Dark energy: a brief review. arXiv:1209.0922
  32. 32.
    Rinaldi, M.: Higgs dark energy. arXiv:1404.0532v4
  33. 33.
    Bezrukov, F., Shaposhnikov, M.: The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703–706 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Zlatev, I., Wang, L., Steinhardt, L.P.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82(5), 896899 (1999). arXiv:astro-ph/9807002 CrossRefGoogle Scholar
  35. 35.
    Smith, H.A.: Alone in the Universe. Am. Sci. 99(4), 320 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA)  2016

Authors and Affiliations

  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations