Quantum Information Processing

, Volume 15, Issue 7, pp 2881–2893 | Cite as

Authenticated semi-quantum key distributions without classical channel

  • Chuan-Ming Li
  • Kun-Fei Yu
  • Shih-Hung Kao
  • Tzonelih Hwang


Yu et al. have proposed the first authenticated semi-quantum key distribution (ASQKD) without using an authenticated classical channel. This study further proposes two advanced ASQKD protocols. Compared to Yu et al.’s schemes, the proposed protocols ensure better qubit efficiency and require fewer pre-shared keys. Security analyses show that the proposed ASQKD protocols also can be secure against several well-known outside eavesdropper’s attacks.


Authentication Semi-quantum key distribution Quantum cryptography 



The authors would like to thank the editor and the anonymous reviewers for their very helpful and valuable comments to enhance the clarity of the manuscript. The authors also thank the Ministry of Science and Technology of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract no. MOST 103-2221-E-471 -001 - and MOST 103-2221-E-006 -177 -.


  1. 1.
    Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cabello, A.: Quantum key distribution without alternative measurements. Phys. Rev. A 61(5), 052312, (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, C., Song, H.S., Zhou, L., Wu, C.F.: A random quantum key distribution achieved by using Bell states. J. Opt. B Quantum Semiclassical Opt. 5(2), 155–157 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRefGoogle Scholar
  9. 9.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)Google Scholar
  10. 10.
    Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Topics Quantum Electron. 15(6), 1602–1606 (2009)CrossRefGoogle Scholar
  11. 11.
    Hong, C.H., Heo, J.O., Khym, G.L., Lim, J., Hong, S.-K., Yang, H.J.: Quantum channels are sufficient for multi-user quantum key distribution protocol between users. Opt. Commun. 283(12), 2644–2646 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284(19), 4836–4842 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143 (2009)Google Scholar
  17. 17.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)Google Scholar
  18. 18.
    Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yang, C.W., Hwang, T., Lin, T.H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process. 12(1), 109–117 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against trojan horse attack. Quantum Phys. (2005). arXiv:quant-ph/0508168v1z
  27. 27.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 73(4), 049901 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chuan-Ming Li
    • 1
  • Kun-Fei Yu
    • 2
  • Shih-Hung Kao
    • 2
  • Tzonelih Hwang
    • 2
  1. 1.Department of Information ManagementShu-Zen Junior College of Medicine and ManagementKaohsiungTaiwan, ROC
  2. 2.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC

Personalised recommendations