Quantum Information Processing

, Volume 15, Issue 6, pp 2621–2638 | Cite as

Separability conditions based on local fine-grained uncertainty relations



Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.


Uncertainty principle Mutually unbiased bases Spectral norm Separable states 


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935); the translation is reprinted. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton (1983)Google Scholar
  4. 4.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Bohm, D.: Quantum Theory. Prentice-Hall, New Jersey (1951)Google Scholar
  6. 6.
    Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)CrossRefGoogle Scholar
  7. 7.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193–202 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219–239 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gühne, O., Lewenstein, M.: Entropic uncertainty relations and entanglement. Phys. Rev. A 70, 012316 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Giovannetti, V.: Separability conditions from entropic uncertainty relations. Phys. Rev. A 70, 012102 (2004)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    de Vicente, J.I., Sánchez-Ruiz, J.: Separability conditions from the Landau–Pollak uncertainty relation. Phys. Rev. A 71, 052325 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Gühne, O., Mechler, M., Tóth, G., Adam, P.: Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A 74, 010301(R) (2006)CrossRefGoogle Scholar
  17. 17.
    Huang, Y.: Entanglement criteria via concave-function uncertainty relations. Phys. Rev. A 82, 012335 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Maccone, L., Bruß, D., Macchiavello, C.: Complementarity and correlations. Phys. Rev. Lett. 114, 130401 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198 (1927); the translation is reprinted In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983)Google Scholar
  21. 21.
    Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)ADSCrossRefGoogle Scholar
  23. 23.
    Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Białynicki-Birula, I., Rudnicki, Ł.: Entropic uncertainty relations in quantum physics. In: Sen, K.D. (ed.) Statistical Complexity, pp. 1–34. Springer, Berlin (2011)CrossRefGoogle Scholar
  25. 25.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40, 65–84 (1961)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zozor, S., Bosyk, G.M., Portesi, M.: General entropic-like uncertainty relations for \(N\)-level systems. J. Phys. A Math. Theor. 47, 495302 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072–1074 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ren, L.-H., Fan, H.: General fine-grained uncertainty relation and the second law of thermodynamics. Phys. Rev. A 90, 052110 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Rastegin, A.E.: Fine-grained uncertainty relations for several quantum measurements. Quantum Inf. Process. 14, 783–800 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Rastegin, A.E.: Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 67, 269 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Chen, B., Ma, T., Fei, S.-M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Sys. Inf. Dyn. 22, 1550005 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Chen, B., Li, T., Fei, S.-M.: General SIC-measurement based entanglement detection. Quantum Inf. Process. 14, 2281–2290 (2015)ADSCrossRefMATHGoogle Scholar
  37. 37.
    Rastegin, A.E.: Notes on general SIC-POVMs. Phys. Scr. 89, 085101 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Kalev, A., Gour, G.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Watrous, J.: Theory of Quantum Information. University of Waterloo, Waterloo. http://www.cs.uwaterloo.ca/~watrous/TQI/ (2015)
  41. 41.
    Rastegin, A.E.: Relations for certain symmetric norms and anti-norms before and after partial trace. J. Stat. Phys. 148, 1040–1053 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)MATHGoogle Scholar
  43. 43.
    Brukner, C̆., Zeilinger, A.: Operationally invariant information in quantum measurements. Phys. Rev. Lett. 83, 3354–3357 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)CrossRefMATHGoogle Scholar
  45. 45.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Klappenecker, A., Röttler, M.: Constructions of mutually unbiased bases. In: Finite Fields and Applications, Lecture Notes in Computer Science, vol. 2948, pp. 137–144. Springer, Berlin (2004)Google Scholar
  47. 47.
    Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comput. 5, 93–101 (2005)MathSciNetMATHGoogle Scholar
  49. 49.
    Rastegin, A.E.: On the Brukner–Zeilinger approach to information in quantum measurements. Proc. Roy. Soc. A 471, 20150435 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Miyadera, T., Imai, H.: Generalized Landau–Pollak uncertainty relation. Phys. Rev. A 76, 062108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  52. 52.
    Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Pramanik, T., Kaplan, M., Majumdar, A.S.: Fine-grained Einstein–Podolsky–Rosen-steering inequalities. Phys. Rev. A 90, 050305(R) (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Rastegin, A.E.: Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis entropies. Quantum Inf. Process. 12, 2947–2963 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Rastegin, A.E.: Uncertainty and certainty relations for Pauli observables in terms of Renyi entropies of order \(\alpha \in (0;1]\). Commun. Theor. Phys. 61, 293–298 (2014)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Ivanovic, I.D.: An inequality for the sum of entropies of unbiased quantum measurements. J. Phys. A Math. Gen. 25, L363–L364 (1995)CrossRefGoogle Scholar
  57. 57.
    Sánchez, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 173, 233–239 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    Linden, N., Popescu, S.: On multi-particle entanglement. Fortschr. Phys. 46, 567–578 (1998)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Tóth, G., Gühne, O.: Detection of multipartite entanglement with two-body correlations. Appl. Phys. B 82, 237–241 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Huang, Y., Qiu, D.W.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11, 235–254 (2012)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Spengler, C., Huber, M., Gabriel, A., Hiesmayr, B.C.: Examining the dimensionality of genuine multipartite entanglement. Quantum Inf. Process 12, 269–278 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Zhao, C., Yang, G., Hung, W.N.N., Li, X.: A multipartite entanglement measure based on coefficient matrices. Quantum Inf. Process. 14, 2861–2881 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Kaszlikowski, D., Kwek, L.C., Chen, J.-L., Żukowski, M., Oh, C.H.: Clauser–Horne inequality for three-state systems. Phys. Rev. A 65, 032118 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  65. 65.
    Pittenger, A.O., Rubin, M.N.: Note on separability of the Werner states in arbitrary dimensions. Opt. Commun. 179, 447–449 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    Brierley, S., Weigert, S., Bengtsson, I.: All mutually unbiased bases in dimensions two to five. Quantum Inf. Comput. 10, 0803–0820 (2010)MathSciNetMATHGoogle Scholar
  67. 67.
    Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)ADSCrossRefGoogle Scholar
  68. 68.
    Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIrkutsk State UniversityIrkutskRussia

Personalised recommendations