Abstract
Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3]] Steane code. The corresponding surface density of logical qubits is 2.6 Mqubit/cm\(^2\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)
Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)
Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104,401 (2011)
Morton, J.J., McCamey, D.R., Eriksson, M.A., Lyon, S.A.: Embracing the quantum limit in silicon computing. Nature 479(7373), 345–353 (2011)
Muhonen, J.T., Dehollain, J.P., Laucht, A., Hudson, F.E., Kalra, R., Sekiguchi, T., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S., Morello, A.: Storing quantum information for 30 s in a nanoelectronic device. Nat. Nanotechnol. 9(12), 986–991 (2014)
Hill, C.D., Peretz, E., Hile, S.J., House, M.G., Fuechsle, M., Rogge, S., Simmons, M.Y., Hollenberg, L.C.L.: A surface code quantum computer in silicon. Sci. Adv. 1(9), e1500707 (2015)
Gurrieri, T., Carroll, M., Lilly, M., Levy, J.: CMOS integrated single electron transistor electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out. In: Nanotechnology, 2008. NANO ’08. 8th IEEE conference on, pp. 609–612 (2008). doi:10.1109/NANO.2008.183
Eng, K., Ten Eyck, G., Tracy, L., Nordberg, E., Childs, K., Stevens, J., Wendt, J., Lilly, M., Carroll, M.: Steps towards fabricating cryogenic cmos compatible single electron devices. In: Nanotechnology, 2008. NANO ’08. 8th IEEE conference on, pp. 496–499 (2008). doi:10.1109/NANO.2008.149
The International Technology Roadmap for Semiconductors, http://www.itrs.net/: Lithography. 2011 Edition (2011)
Tagliaferri, M.L.V., Crippa, A., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology. Phys. Lett. A 380(11–12), 1205–1209 (2016)
De Michielis, M., Prati, E., Fanciulli, M., Fiori, G., Iannaccone, G.: Geometrical effects on valley-orbital filling patterns in silicon quantum dots for robust qubit implementation. Appl. Phys. Express 5(12), 124,001 (2012)
Prati, E., De Michielis, M., Belli, M., Cocco, S., Fanciulli, M., Kotekar-Patil, D., Ruoff, M., Kern, D.P., Wharam, D.A., Verduijn, J., Tettamanzi, G.C., Rogge, S., Roche, B., Wacquez, R., Jehl, X., Vinet, M., Sanquer, M.: Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 23(21), 215,204 (2012)
Yang, C.H., Rossi, A., Ruskov, R., Lai, N.S., Mohiyaddin, F.A., Lee, S., Tahan, C., Klimeck, G., Morello, A., Dzurak, A.S.: Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4, 2069 (2013). doi:10.1038/ncomms3069
Maune, B., Borselli, M., Huang, B., Ladd, T., Deelman, P., Holabird, K., Kiselev, A., Alvarado-Rodriguez, I., Ross, R., Schmitz, A., et al.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481(7381), 344–347 (2012)
Shi, Z., Simmons, C., Ward, D.R., Prance, J., Wu, X., Koh, T.S., Gamble, J.K., Savage, D., Lagally, M., Friesen, M., et al.: Fast coherent manipulation of three-electron states in a double quantum dot. Nat. Commun. 5, 3020 (2014). doi:10.1038/ncomms4020
Kim, D., Shi, Z., Simmons, C., Ward, D., Prance, J., Koh, T.S., Gamble, J.K., Savage, D., Lagally, M., Friesen, M., et al.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511(7507), 70 (2014)
Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. Npj Quantum Inf. 1, 15,004 (2015)
Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9(12), 981–985 (2014)
Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)
Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62(1), 012,306 (2000)
Hollenberg, L., Dzurak, A., Wellard, C., Hamilton, A., Reilly, D., Milburn, G., Clark, R.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69(11), 113,301 (2004)
Koiller, B., Hu, X., Capaz, R.B., Martins, A.S., Das Sarma, S.: Silicon-based spin and charge quantum computation. An. da Acad. Bras. de Ciênc. 77(2), 201–222 (2005)
Leti, G., Prati, E., Belli, M., Petretto, G., Fanciulli, M., Vinet, M., Wacquez, R., Sanquer, M.: Switching quantum transport in a three donors silicon fin-field effect transistor. Appl. Phys. Lett. 99(24), 242,102 (2011)
Mazzeo, G., Prati, E., Belli, M., Leti, G., Cocco, S., Fanciulli, M., Guagliardo, F., Ferrari, G.: Charge dynamics of a single donor coupled to a few-electron quantum dot in silicon. Appl. Phys. Lett. 100(21), 213107 (2012)
Rotta, D., Vellei, A., Mazzeo, G., Belli, M., Cocco, S., Tagliaferri, M.L.V., Crippa, A., Prati, E., Fanciulli, M.: Spin-dependent recombination and single charge dynamics in silicon nanostructrures. Eur. Phys. J. Plus 129(6), 121 (2014)
Prati, E., Hori, M., Guagliardo, F., Ferrari, G., Shinada, T.: Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat. Nanotechnol. 7(7), 443–447 (2012)
Tan, K.Y., Chan, K.W., Möttönen, M., Morello, A., Yang, C., Donkelaar, Jv, Alves, A., Pirkkalainen, J.M., Jamieson, D.N., Clark, R.G., Dzurak, A.S.: Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10(1), 11–15 (2010)
Pla, J.J., Mohiyaddin, F.A., Tan, K.Y., Dehollain, J.P., Rahman, R., Klimeck, G., Jamieson, D.N., Dzurak, A.S., Morello, A.: Coherent control of a single \(^{29}{\rm Si}\) nuclear spin qubit. Phys. Rev. Lett. 113, 246,801 (2014)
Veldhorst, M., Yang, C.H., Hwang, J.C.C., Huang, W., Dehollain, J.P., Muhonen, J.T., Simmons, S., Laucht, A., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: A two-qubit logic gate in silicon. Nature 526(7573), 410–414 (2015)
Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., et al.: Single-shot readout of an electron spin in silicon. Nature 467(7316), 687–691 (2010)
Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541–545 (2012)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)
Kloeffel, C., Loss, D.: Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4(1), 51–81 (2013)
Koppens, F., Buizert, C., Tielrooij, K.J., Vink, I., Nowack, K., Meunier, T., Kouwenhoven, L., Vandersypen, L.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442(7104), 766–771 (2006)
Cao, G., Li, H.O., Tu, T., Wang, L., Zhou, C., Xiao, M., Guo, G.C., Jiang, H.W., Guo, G.P.: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stückelberg interference. Nat. Commun. 4, 1401 (2013)
Petta, J., Johnson, A., Taylor, J., Laird, E., Yacoby, A., Lukin, M., Marcus, C., Hanson, M., Gossard, A.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005)
Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336(6078), 202–205 (2012)
Shi, Z., Simmons, C., Prance, J., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X., Savage, D., Lagally, M., Eriksson, M., et al.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108(14), 140,503 (2012)
Mehl, S.: Two-qubit pulse gate for the three-electron double quantum dot qubit. Phys. Rev. B 91, 035,430 (2015)
Mehl, S.: Quantum computation with three-electron double quantum dots at an optimal operation point. arXiv:1507.03425v1 (2015)
Laird, E.A., Taylor, J.M., DiVincenzo, D.P., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075,403 (2010)
Tyryshkin, A.M., Tojo, S., Morton, J.J., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M.L., Itoh, K.M., et al.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11(2), 143–147 (2011)
Wu, M., Jiang, J., Weng, M.: Spin dynamics in semiconductors. Phys. Rep. 493(2–4), 61–236 (2010)
Pierre, M., Wacquez, R., Roche, B., Jehl, X., Sanquer, M., Vinet, M., Prati, E., Belli, M., Fanciulli, M.: Compact silicon double and triple dots realized with only two gates. Appl. Phys. Lett. 95(24), 242107 (2009)
Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: Effective hamiltonian for the hybrid double quantum dot qubit. Quantum Inf. Process. 13(5), 1155–1173 (2014)
Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Effective hamiltonian for two interacting double-dot exchange-only qubits and their controlled-not operations. Quantum Inf. Process. 14(1), 47 (2015)
De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling. J. Phys. A Math. Theor. 48, 065,304 (2015)
Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Coherent tunneling by adiabatic passage of an exchange-only spin qubit in a double quantum dot chain. Phys. Rev. B 91, 075,435 (2015)
Koh, T.S., Coppersmith, S., Friesen, M.: High-fidelity gates in quantum dot spin qubits. Proc. Natl. Acad. Sci. 110(49), 19695–19700 (2013)
Nishi, Y., Doering, R.: Handbook of Semiconductor Manufacturing Technology, 2nd edn. Taylor & Francis, Abingdon (2012)
Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076,001 (2013)
Fong, B., Wandzura, S.: Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem. Quantum Inf. Comput. 11, 1003–1018 (2011)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)
Gottesman, D.: An introduction to quantum error correction and fault-tolerant Quantum Computation. In: Quantum Information Science and its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58. American Mathematical Society, Providence, RI. arXiv:0904.2557 [quant-ph] (2010)
Copsey, D., Oskin, M., Impens, F., Metodiev, T., Cross, A., Chong, F., Chuang, I., Kubiatowicz, J.: Toward a scalable, silicon-based quantum computing architecture. Sel. Top. Quantum Electron. IEEE J. 9(6), 1552–1569 (2003)
Preskill, J.: Reliable quantum computers. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1969), 385–410 (1998)
Zeng, B., Cross, A., Chuang, I.: Transversality versus universality for additive quantum codes. IEEE Trans. Inf. Theory 57(9), 6272 (2011)
Sanders, Y.R., Wallman, J.J., Sanders, B.C.: Bounding quantum gate error rate on reported gate fidelity. New J. Phys. 18(1), 012002 (2016). doi:10.1088/1367-2630/18/1/012002
Prati, E., Fanciulli, M., Ferrari, G., Sampietro, M.: Giant random telegraph signal generated by single charge trapping in submicron n-metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 103(12), 123707 (2008)
Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193,207 (2003)
Saeedi, K., Simmons, S., Salvail, J.Z., Dluhy, P., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Morton, J.J.L., Thewalt, M.L.W.: Room-temperature quantum bit storage exceeding 39 min using ionized donors in silicon-28. Science 342(6160), 830–833 (2013)
Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding \(200\,\upmu \)s. Nat. Phys. 7(2), 109–113 (2011)
DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408(6810), 339–342 (2000)
Greentree, A.D., Cole, J.H., Hamilton, A., Hollenberg, L.C.: Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70(23), 235,317 (2004)
Huneke, J., Platero, G., Kohler, S.: Steady-state coherent transfer by adiabatic passage. Phys. Rev. Lett. 110(3), 036,802 (2013)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Acknowledgments
This work was partially supported by the project QuDec (Grant No.9915), funded by the Italian Ministry of Defence.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of topical collection on Quantum Computer Science.
Rights and permissions
About this article
Cite this article
Rotta, D., De Michielis, M., Ferraro, E. et al. Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf Process 15, 2253–2274 (2016). https://doi.org/10.1007/s11128-016-1282-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1282-3