Skip to main content
Log in

Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3]] Steane code. The corresponding surface density of logical qubits is 2.6 Mqubit/cm\(^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  3. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104,401 (2011)

    Article  Google Scholar 

  4. Morton, J.J., McCamey, D.R., Eriksson, M.A., Lyon, S.A.: Embracing the quantum limit in silicon computing. Nature 479(7373), 345–353 (2011)

    Article  ADS  Google Scholar 

  5. Muhonen, J.T., Dehollain, J.P., Laucht, A., Hudson, F.E., Kalra, R., Sekiguchi, T., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S., Morello, A.: Storing quantum information for 30 s in a nanoelectronic device. Nat. Nanotechnol. 9(12), 986–991 (2014)

    Article  ADS  Google Scholar 

  6. Hill, C.D., Peretz, E., Hile, S.J., House, M.G., Fuechsle, M., Rogge, S., Simmons, M.Y., Hollenberg, L.C.L.: A surface code quantum computer in silicon. Sci. Adv. 1(9), e1500707 (2015)

    Article  ADS  Google Scholar 

  7. Gurrieri, T., Carroll, M., Lilly, M., Levy, J.: CMOS integrated single electron transistor electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out. In: Nanotechnology, 2008. NANO ’08. 8th IEEE conference on, pp. 609–612 (2008). doi:10.1109/NANO.2008.183

  8. Eng, K., Ten Eyck, G., Tracy, L., Nordberg, E., Childs, K., Stevens, J., Wendt, J., Lilly, M., Carroll, M.: Steps towards fabricating cryogenic cmos compatible single electron devices. In: Nanotechnology, 2008. NANO ’08. 8th IEEE conference on, pp. 496–499 (2008). doi:10.1109/NANO.2008.149

  9. The International Technology Roadmap for Semiconductors, http://www.itrs.net/: Lithography. 2011 Edition (2011)

  10. Tagliaferri, M.L.V., Crippa, A., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology. Phys. Lett. A 380(11–12), 1205–1209 (2016)

    Article  ADS  Google Scholar 

  11. De Michielis, M., Prati, E., Fanciulli, M., Fiori, G., Iannaccone, G.: Geometrical effects on valley-orbital filling patterns in silicon quantum dots for robust qubit implementation. Appl. Phys. Express 5(12), 124,001 (2012)

    Article  Google Scholar 

  12. Prati, E., De Michielis, M., Belli, M., Cocco, S., Fanciulli, M., Kotekar-Patil, D., Ruoff, M., Kern, D.P., Wharam, D.A., Verduijn, J., Tettamanzi, G.C., Rogge, S., Roche, B., Wacquez, R., Jehl, X., Vinet, M., Sanquer, M.: Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 23(21), 215,204 (2012)

    Article  Google Scholar 

  13. Yang, C.H., Rossi, A., Ruskov, R., Lai, N.S., Mohiyaddin, F.A., Lee, S., Tahan, C., Klimeck, G., Morello, A., Dzurak, A.S.: Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4, 2069 (2013). doi:10.1038/ncomms3069

    ADS  Google Scholar 

  14. Maune, B., Borselli, M., Huang, B., Ladd, T., Deelman, P., Holabird, K., Kiselev, A., Alvarado-Rodriguez, I., Ross, R., Schmitz, A., et al.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481(7381), 344–347 (2012)

    Article  ADS  Google Scholar 

  15. Shi, Z., Simmons, C., Ward, D.R., Prance, J., Wu, X., Koh, T.S., Gamble, J.K., Savage, D., Lagally, M., Friesen, M., et al.: Fast coherent manipulation of three-electron states in a double quantum dot. Nat. Commun. 5, 3020 (2014). doi:10.1038/ncomms4020

    ADS  Google Scholar 

  16. Kim, D., Shi, Z., Simmons, C., Ward, D., Prance, J., Koh, T.S., Gamble, J.K., Savage, D., Lagally, M., Friesen, M., et al.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511(7507), 70 (2014)

    Article  ADS  Google Scholar 

  17. Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. Npj Quantum Inf. 1, 15,004 (2015)

    Article  Google Scholar 

  18. Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9(12), 981–985 (2014)

    Article  ADS  Google Scholar 

  19. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  ADS  Google Scholar 

  20. Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62(1), 012,306 (2000)

    Article  Google Scholar 

  21. Hollenberg, L., Dzurak, A., Wellard, C., Hamilton, A., Reilly, D., Milburn, G., Clark, R.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69(11), 113,301 (2004)

    Article  Google Scholar 

  22. Koiller, B., Hu, X., Capaz, R.B., Martins, A.S., Das Sarma, S.: Silicon-based spin and charge quantum computation. An. da Acad. Bras. de Ciênc. 77(2), 201–222 (2005)

    Article  Google Scholar 

  23. Leti, G., Prati, E., Belli, M., Petretto, G., Fanciulli, M., Vinet, M., Wacquez, R., Sanquer, M.: Switching quantum transport in a three donors silicon fin-field effect transistor. Appl. Phys. Lett. 99(24), 242,102 (2011)

    Article  Google Scholar 

  24. Mazzeo, G., Prati, E., Belli, M., Leti, G., Cocco, S., Fanciulli, M., Guagliardo, F., Ferrari, G.: Charge dynamics of a single donor coupled to a few-electron quantum dot in silicon. Appl. Phys. Lett. 100(21), 213107 (2012)

    Article  ADS  Google Scholar 

  25. Rotta, D., Vellei, A., Mazzeo, G., Belli, M., Cocco, S., Tagliaferri, M.L.V., Crippa, A., Prati, E., Fanciulli, M.: Spin-dependent recombination and single charge dynamics in silicon nanostructrures. Eur. Phys. J. Plus 129(6), 121 (2014)

    Article  Google Scholar 

  26. Prati, E., Hori, M., Guagliardo, F., Ferrari, G., Shinada, T.: Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat. Nanotechnol. 7(7), 443–447 (2012)

    Article  ADS  Google Scholar 

  27. Tan, K.Y., Chan, K.W., Möttönen, M., Morello, A., Yang, C., Donkelaar, Jv, Alves, A., Pirkkalainen, J.M., Jamieson, D.N., Clark, R.G., Dzurak, A.S.: Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10(1), 11–15 (2010)

    Article  ADS  Google Scholar 

  28. Pla, J.J., Mohiyaddin, F.A., Tan, K.Y., Dehollain, J.P., Rahman, R., Klimeck, G., Jamieson, D.N., Dzurak, A.S., Morello, A.: Coherent control of a single \(^{29}{\rm Si}\) nuclear spin qubit. Phys. Rev. Lett. 113, 246,801 (2014)

    Article  Google Scholar 

  29. Veldhorst, M., Yang, C.H., Hwang, J.C.C., Huang, W., Dehollain, J.P., Muhonen, J.T., Simmons, S., Laucht, A., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: A two-qubit logic gate in silicon. Nature 526(7573), 410–414 (2015)

    Article  ADS  Google Scholar 

  30. Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., et al.: Single-shot readout of an electron spin in silicon. Nature 467(7316), 687–691 (2010)

    Article  ADS  Google Scholar 

  31. Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541–545 (2012)

    Article  ADS  Google Scholar 

  32. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)

    Article  ADS  Google Scholar 

  33. Kloeffel, C., Loss, D.: Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4(1), 51–81 (2013)

    Article  ADS  Google Scholar 

  34. Koppens, F., Buizert, C., Tielrooij, K.J., Vink, I., Nowack, K., Meunier, T., Kouwenhoven, L., Vandersypen, L.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442(7104), 766–771 (2006)

    Article  ADS  Google Scholar 

  35. Cao, G., Li, H.O., Tu, T., Wang, L., Zhou, C., Xiao, M., Guo, G.C., Jiang, H.W., Guo, G.P.: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stückelberg interference. Nat. Commun. 4, 1401 (2013)

    Article  ADS  Google Scholar 

  36. Petta, J., Johnson, A., Taylor, J., Laird, E., Yacoby, A., Lukin, M., Marcus, C., Hanson, M., Gossard, A.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005)

    Article  ADS  Google Scholar 

  37. Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336(6078), 202–205 (2012)

    Article  ADS  Google Scholar 

  38. Shi, Z., Simmons, C., Prance, J., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X., Savage, D., Lagally, M., Eriksson, M., et al.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108(14), 140,503 (2012)

    Article  Google Scholar 

  39. Mehl, S.: Two-qubit pulse gate for the three-electron double quantum dot qubit. Phys. Rev. B 91, 035,430 (2015)

    Article  Google Scholar 

  40. Mehl, S.: Quantum computation with three-electron double quantum dots at an optimal operation point. arXiv:1507.03425v1 (2015)

  41. Laird, E.A., Taylor, J.M., DiVincenzo, D.P., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075,403 (2010)

    Article  Google Scholar 

  42. Tyryshkin, A.M., Tojo, S., Morton, J.J., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M.L., Itoh, K.M., et al.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11(2), 143–147 (2011)

    Article  ADS  Google Scholar 

  43. Wu, M., Jiang, J., Weng, M.: Spin dynamics in semiconductors. Phys. Rep. 493(2–4), 61–236 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. Pierre, M., Wacquez, R., Roche, B., Jehl, X., Sanquer, M., Vinet, M., Prati, E., Belli, M., Fanciulli, M.: Compact silicon double and triple dots realized with only two gates. Appl. Phys. Lett. 95(24), 242107 (2009)

    Article  ADS  Google Scholar 

  45. Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: Effective hamiltonian for the hybrid double quantum dot qubit. Quantum Inf. Process. 13(5), 1155–1173 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Effective hamiltonian for two interacting double-dot exchange-only qubits and their controlled-not operations. Quantum Inf. Process. 14(1), 47 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling. J. Phys. A Math. Theor. 48, 065,304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Coherent tunneling by adiabatic passage of an exchange-only spin qubit in a double quantum dot chain. Phys. Rev. B 91, 075,435 (2015)

    Article  MATH  Google Scholar 

  49. Koh, T.S., Coppersmith, S., Friesen, M.: High-fidelity gates in quantum dot spin qubits. Proc. Natl. Acad. Sci. 110(49), 19695–19700 (2013)

    Article  ADS  Google Scholar 

  50. Nishi, Y., Doering, R.: Handbook of Semiconductor Manufacturing Technology, 2nd edn. Taylor & Francis, Abingdon (2012)

    Google Scholar 

  51. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076,001 (2013)

    Article  Google Scholar 

  52. Fong, B., Wandzura, S.: Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem. Quantum Inf. Comput. 11, 1003–1018 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Gottesman, D.: An introduction to quantum error correction and fault-tolerant Quantum Computation. In: Quantum Information Science and its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58. American Mathematical Society, Providence, RI. arXiv:0904.2557 [quant-ph] (2010)

  55. Copsey, D., Oskin, M., Impens, F., Metodiev, T., Cross, A., Chong, F., Chuang, I., Kubiatowicz, J.: Toward a scalable, silicon-based quantum computing architecture. Sel. Top. Quantum Electron. IEEE J. 9(6), 1552–1569 (2003)

    Article  Google Scholar 

  56. Preskill, J.: Reliable quantum computers. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1969), 385–410 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Zeng, B., Cross, A., Chuang, I.: Transversality versus universality for additive quantum codes. IEEE Trans. Inf. Theory 57(9), 6272 (2011)

    Article  MathSciNet  Google Scholar 

  58. Sanders, Y.R., Wallman, J.J., Sanders, B.C.: Bounding quantum gate error rate on reported gate fidelity. New J. Phys. 18(1), 012002 (2016). doi:10.1088/1367-2630/18/1/012002

    Article  ADS  Google Scholar 

  59. Prati, E., Fanciulli, M., Ferrari, G., Sampietro, M.: Giant random telegraph signal generated by single charge trapping in submicron n-metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 103(12), 123707 (2008)

    Article  ADS  Google Scholar 

  60. Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193,207 (2003)

    Article  Google Scholar 

  61. Saeedi, K., Simmons, S., Salvail, J.Z., Dluhy, P., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Morton, J.J.L., Thewalt, M.L.W.: Room-temperature quantum bit storage exceeding 39 min using ionized donors in silicon-28. Science 342(6160), 830–833 (2013)

    Article  ADS  Google Scholar 

  62. Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding \(200\,\upmu \)s. Nat. Phys. 7(2), 109–113 (2011)

    Article  Google Scholar 

  63. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408(6810), 339–342 (2000)

    Article  ADS  Google Scholar 

  64. Greentree, A.D., Cole, J.H., Hamilton, A., Hollenberg, L.C.: Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70(23), 235,317 (2004)

    Article  Google Scholar 

  65. Huneke, J., Platero, G., Kohler, S.: Steady-state coherent transfer by adiabatic passage. Phys. Rev. Lett. 110(3), 036,802 (2013)

    Article  Google Scholar 

  66. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the project QuDec (Grant No.9915), funded by the Italian Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Rotta.

Additional information

This article is part of topical collection on Quantum Computer Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotta, D., De Michielis, M., Ferraro, E. et al. Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf Process 15, 2253–2274 (2016). https://doi.org/10.1007/s11128-016-1282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1282-3

Keywords

Navigation