Quantum Information Processing

, Volume 15, Issue 5, pp 2181–2191 | Cite as

Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

  • Bin Zheng
  • Li-Tuo Shen
  • Ming-Feng Chen


We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X–Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.


Quantum state transfer Entanglement Coupled cavity XY model 


  1. 1.
    Shor, P. W.: Algorithms for quantum computation. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, p. 124. IEEE Press, Los Alamos, CA (1994)Google Scholar
  2. 2.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Paternostro, M., Kim, M.S., Palma, G.M.: Non-local quantum gates: a cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50, 2075–2094 (2003)ADSCrossRefMATHGoogle Scholar
  6. 6.
    DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Raimond, J.M., Haroche, S.: Exploring the Quantum. Oxford Univ. Press, Oxford (2006)MATHGoogle Scholar
  8. 8.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Peng, P., Li, F.L.: Entangling two atoms in spatially separated cavities through both photon emission and absorption processes. Phys. Rev. A 75, 062320 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Zhou, Y.L., Wang, Y.M., Liang, L.M., Li, C.Z.: Quantum state transfer between distant nodes of a quantum network via adiabatic passage. Phys. Rev. A 79, 044304 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null-and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, X., Schirmer, S.G.: Entanglement generation between distant atoms by Lyapunov control. Phys. Rev. A 80, 042305 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Yang, Z.B., Ye, S.Y., Serafini, A., Zheng, S.B.: Distributed coherent manipulation of qutrits by virtual excitation processes. Phys. B At. Mol. Opt. Phys. 43, 085506 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, P., Chen, M.F.: Preparation of four-dimensional entangled states in separate cavities via adiabatic passage. Phys. Scr. 86, 065002 (2012)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. B 30, 468–474 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Bevilacqua, G., Renzoni, F.: Quantum-state transfer between tripod atoms over a dark fiber. Phys. Rev. A 88, 033817 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Yang, Z.B., Wu, H.Z., Xia, Y., Zheng, S.B.: Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems. Eur. Phys. J. D 61, 737–744 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Atomic quantum state transferring and swapping via quantum Zeno dynamics. J. Opt. Soc. Am. B 28, 2909–2914 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Lu, M., Xia, Y., Song, J., An, N.B.: Generation of N-atom W-class states in spatially separated cavities. J. Opt. Soc. Am. B 30, 2142 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser Phys. Lett. 11, 115201 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Zheng, S.B.: Quantum logic gates for two atoms with a single resonant interaction. Phys. Rev. A 71, 062335 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Zheng, S.B.: Implementation of Toffoli gates with a single asymmetric Heisenberg X Y interaction. Phys. Rev. A 87, 042318 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Chen, M.F., Shen, L.T., Yang, Z.B.: Implementation of distributed Toffoli gates in separate cavities through virtual excitation processes. J. Opt. Soc. Am. B 31, 400–404 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Olaya-Castro, A., Johnson, N.F., Quiroga, L.: Robust one-step catalytic machine for high fidelity anticloning and W-state generation in a multiqubit system. Phys. Rev. Lett. 94, 110502 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Lu, D.M., Zheng, S.B.: One-step generation of maximally entangled states for three atoms trapped in separated cavities. Chin. J. Phys. 50, 795–803 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsFuzhou UniversityFuzhouChina

Personalised recommendations