Quantum Information Processing

, Volume 15, Issue 3, pp 1135–1188 | Cite as

Topological quantum computation within the anyonic system the Kauffman–Jones version of SU(2) Chern–Simons theory at level 4

  • Claire Levaillant


By braiding and measuring anyons, we realize irrational qubit and qutrit phase gates within the anyonic system the Kauffman-Jones version of SU(2) Chern-Simons theory at level 4. We obtain universality on 1-qubit and 1-qutrit gates. In the qubit case, we also provide a protocol for realizing the controlled NOT gate, thus leading to universality on n-qubit gates.


Quantum computation with anyons Braids Fusion measurements Interferometric measurements Ancilla preparation Irrational qubit and qutrit phase gates Computational universality for n-qubit gates Computational universality for 1-qutrit gates Controlled NOT gate 



The author is delighted to heartedly thank Michael Freedman for kind, exciting and generous guidance and for many inspiring discussions. Working with him and Station Q on these topics is a great chance and a fabulous experience. She thanks Matthew Hastings for enlightening discussions. She is also quite pleased to thank Bela Bauer, Stephen Bigelow, Parsa Bonderson, Meng Cheng, Spiros Michalakis, Chetan Nayak and Zhenghan Wang for helpful discussions.


  1. 1.
    Bauer, B., Bonderson, P., Freedman, M.H., Hastings, M., Levaillant, C., Wang, Z., Yard, J.: Anyonic gates beyond braiding, unpublishedGoogle Scholar
  2. 2.
    Bauer, B., Levaillant, C.: A new set of generators and a physical interpretation for the \(SU(3)\) finite subgroup \(D(9,1,1;2,1,1)\). Quant. Inf. Process. 12(7), 2509–2521 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonderson, P.H.: Non-Abelian anyons and interferometry, Ph.D. thesis California Institute of Technology (2007)Google Scholar
  4. 4.
    Bonderson, P., Freedman, M.H., Nayak, C.: Measurement only topological quantum computation via anyonic interferometry. Ann. Phys. 324, 787–826 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bonderson, P., Shtengel, K., Slingerland, J.K.: Interferometry of non-Abelian anyons. Ann. Phys. 323, 2709–2755 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bremner, Michael J., Dawson, Christopher M., Dodd, Jennifer L., Gilchrist, Alexei, Harrow, Aram W., Mortimer, Duncan, Nielsen, Michael A., Osborne, Tobias J.: A practical scheme for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett. 89, 247902 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brylinski, J.-L., Brylinski, R.: Universal quantum gates. arXiv:quant-ph/0108062 (2001)
  9. 9.
    Calcut, J.: Gaussian integers and arctangent identities for \(\pi \). Am. Math. Mon. 116, 515–530 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Calcut, J.: Rationality and the tangent function.
  11. 11.
    Cui, S.X., Wang, Z.: Universal quantum computation with metaplectic anyons. J. Math. Phys. 56(3), 032202 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Freedman, M.H., Levaillant, C.: Interferometry versus projective measurement of anyons. arXiv:1501.01339
  13. 13.
    Kauffmann, L., Lins, S.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)Google Scholar
  14. 14.
    Levaillant, C.: The Freedman group: a physical interpretation for the \(SU(3)\)-subgroup \(D(18,1,1;2,1,1)\) of order 648. J. Phys. A Math. Theor. 47, 285203 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Levaillant, C.: On some projective unitary qutrit gates. arXiv:1401.0506
  16. 16.
    Levaillant, C.: Making a circulant 2-qubit entangling gate. arXiv:1501.01013
  17. 17.
    Levaillant, C.: Protocol for making a 2-qutrit entangling gate in the Kauffman–Jones version of \(SU(2)_4\). arXiv:1501.01019
  18. 18.
    Levaillant, C., Bauer, B., Freedman, M., Wang, Z., Bonderson, P.: Universal gates via fusion and measurement operations on \(SU(2)_4\) anyons. Phys. Rev. A 92, 012301 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Mochon, C.: Anyons from non-solvable finite groups are sufficient for universal quantum computation. Phys. Rev. A 67, 022315 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Olmsted, J.M.H.: Rational values of trigonometric functions. Am. Math. Mon. 52(9), 507–508 (1945)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, Z.: Topological Quantum Computation, CBMS Monograph, vol. 112. American Mathematical Society, Providence (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ParisFrance

Personalised recommendations