Skip to main content
Log in

Topological quantum computation within the anyonic system the Kauffman–Jones version of SU(2) Chern–Simons theory at level 4

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By braiding and measuring anyons, we realize irrational qubit and qutrit phase gates within the anyonic system the Kauffman-Jones version of SU(2) Chern-Simons theory at level 4. We obtain universality on 1-qubit and 1-qutrit gates. In the qubit case, we also provide a protocol for realizing the controlled NOT gate, thus leading to universality on n-qubit gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, B., Bonderson, P., Freedman, M.H., Hastings, M., Levaillant, C., Wang, Z., Yard, J.: Anyonic gates beyond braiding, unpublished

  2. Bauer, B., Levaillant, C.: A new set of generators and a physical interpretation for the \(SU(3)\) finite subgroup \(D(9,1,1;2,1,1)\). Quant. Inf. Process. 12(7), 2509–2521 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bonderson, P.H.: Non-Abelian anyons and interferometry, Ph.D. thesis California Institute of Technology (2007)

  4. Bonderson, P., Freedman, M.H., Nayak, C.: Measurement only topological quantum computation via anyonic interferometry. Ann. Phys. 324, 787–826 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bonderson, P., Shtengel, K., Slingerland, J.K.: Interferometry of non-Abelian anyons. Ann. Phys. 323, 2709–2755 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bremner, Michael J., Dawson, Christopher M., Dodd, Jennifer L., Gilchrist, Alexei, Harrow, Aram W., Mortimer, Duncan, Nielsen, Michael A., Osborne, Tobias J.: A practical scheme for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett. 89, 247902 (2002)

    Article  ADS  Google Scholar 

  7. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brylinski, J.-L., Brylinski, R.: Universal quantum gates. arXiv:quant-ph/0108062 (2001)

  9. Calcut, J.: Gaussian integers and arctangent identities for \(\pi \). Am. Math. Mon. 116, 515–530 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calcut, J.: Rationality and the tangent function. http://www.oberlin.edu/faculty/jcalcut/tanpap

  11. Cui, S.X., Wang, Z.: Universal quantum computation with metaplectic anyons. J. Math. Phys. 56(3), 032202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Freedman, M.H., Levaillant, C.: Interferometry versus projective measurement of anyons. arXiv:1501.01339

  13. Kauffmann, L., Lins, S.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)

    Google Scholar 

  14. Levaillant, C.: The Freedman group: a physical interpretation for the \(SU(3)\)-subgroup \(D(18,1,1;2,1,1)\) of order 648. J. Phys. A Math. Theor. 47, 285203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levaillant, C.: On some projective unitary qutrit gates. arXiv:1401.0506

  16. Levaillant, C.: Making a circulant 2-qubit entangling gate. arXiv:1501.01013

  17. Levaillant, C.: Protocol for making a 2-qutrit entangling gate in the Kauffman–Jones version of \(SU(2)_4\). arXiv:1501.01019

  18. Levaillant, C., Bauer, B., Freedman, M., Wang, Z., Bonderson, P.: Universal gates via fusion and measurement operations on \(SU(2)_4\) anyons. Phys. Rev. A 92, 012301 (2015)

    Article  ADS  Google Scholar 

  19. Mochon, C.: Anyons from non-solvable finite groups are sufficient for universal quantum computation. Phys. Rev. A 67, 022315 (2003)

    Article  ADS  Google Scholar 

  20. Olmsted, J.M.H.: Rational values of trigonometric functions. Am. Math. Mon. 52(9), 507–508 (1945)

    Article  MathSciNet  Google Scholar 

  21. Wang, Z.: Topological Quantum Computation, CBMS Monograph, vol. 112. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

Download references

Acknowledgments

The author is delighted to heartedly thank Michael Freedman for kind, exciting and generous guidance and for many inspiring discussions. Working with him and Station Q on these topics is a great chance and a fabulous experience. She thanks Matthew Hastings for enlightening discussions. She is also quite pleased to thank Bela Bauer, Stephen Bigelow, Parsa Bonderson, Meng Cheng, Spiros Michalakis, Chetan Nayak and Zhenghan Wang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Levaillant.

Additional information

Claire Levaillant worked with the Microsoft Research Station Q team.

Appendices

Appendix 1: Mathematica notebook for the useful symbols

figure ba

The Mathematica command Bu[ijklmn] computes the unitary 6j-symbol

$$\begin{aligned} \left\{ \begin{array}{ccc}i&{}j&{}m\\ k&{}l&{}n\end{array}\right\} ^u \end{aligned}$$

The Mathematica command r[abc] computes the phase associated with the R-move

figure bb

Appendix 2: The Freedman fusion operations

The operation was originally introduced for the qutrit (figure to the LHS).

The same operation can also be applied to the qubit (figure to the RHS).

figure bc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levaillant, C. Topological quantum computation within the anyonic system the Kauffman–Jones version of SU(2) Chern–Simons theory at level 4. Quantum Inf Process 15, 1135–1188 (2016). https://doi.org/10.1007/s11128-016-1249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1249-4

Keywords

Navigation