Quantum Information Processing

, Volume 15, Issue 4, pp 1811–1825 | Cite as

Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains



The quantum coherence based on Wigner–Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local \(\sigma ^z\) quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local \(\sigma ^x\) and \(\sigma ^y\) quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.


Wigner–Yanase skew information Quantum phase transitions Critical spin systems 



This work was supported by the National Natural Science Foundation of China (Grant No. 11175087). We would like to thank Ming Zhong for useful discussions.


  1. 1.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Olliver, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Åberg, J.: Quantifying superposition. arXiv:quant-ph/0612146
  10. 10.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)Google Scholar
  12. 12.
    Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  14. 14.
    Chakrabarti, B.K., Dutta, A., Sen, P.: Quantum Ising Phases and Transitions in Transverse Ising Models. Springer, Heidelberg (1996)MATHGoogle Scholar
  15. 15.
    Continentino, M.A.: Quantum Scaling in Many-Body Systems. World Scientific, Singapore (2001)MATHGoogle Scholar
  16. 16.
    Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Çakmak, B., Karpat, G., Gedik, Z.: Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations. Phys. Lett. A 376, 2982 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Zhong, M., Xu, H., Liu, X.-X., Tong, P.-Q.: The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field. Chin. Phys. B 22, 090313 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner–Yanase skew information in quantum spin chains. Quantum Inf. Process. 14, 2535 (2015)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, X., Zhong, M., Xu, H., Tong, P.: Chiral phase and quantum phase transitions of anisotropic XY chains with three-site interactions. J. Stat. Mech. 01, P01003 (2012)Google Scholar
  22. 22.
    Lou, P., Wu, W.-C., Chang, M.-C.: Quantum phase transition in spin-12 XX Heisenberg chain with three-spin interaction. Phys. Rev. B 70, 064405 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Derzhko, O., Verkholyak, T., Krokhmalshii, T., Büttner, H.: Dynamic probes of quantum spin chains with the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 73, 214407 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Lei, S., Tong, P.: Quantum discord in the transverse field XY chains with three-spin interaction. Physica B 463, 1 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Bunder, J.E., McKenzie, R.H.: Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field. Phys. Rev. B 60, 344 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Gu, S.-J., Tian, G.-S., Lin, H.-Q.: Ground-state entanglement in the XXZ model. Phys. Rev. A 71, 052322 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theoretical PhysicsNanjing Normal UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex SystemsNanjing Normal UniversityNanjingPeople’s Republic of China
  3. 3.College of ScienceNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations