Quantum Information Processing

, Volume 15, Issue 4, pp 1629–1638 | Cite as

Geometry of quantum state space and quantum correlations



Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by \(2\times 2\) density matrices, we determine a particular Riemannian metric for a state \(\rho \) and show that if \(\rho \) gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.


Quantum correlations Negativity Entanglement Riemannian metrics 



The author would like to acknowledge DST, Govt of India, for the financial support through INSPIRE Fellowship.


  1. 1.
    Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society (2007)Google Scholar
  2. 2.
    Morozova, E.A., C̆encov, N.N.: Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya. Itogi Nauki Tekh 36, 69–102 (1990)Google Scholar
  3. 3.
    Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Petz, D., Hasegawa, H.: On the Riemannian metric of \(\alpha \)-entropies of density matrices. Lett. Math. Phys. 38, 221–225 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tóth, G., Petz, D.: Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 87, 032324-1–032324-11 (2013)Google Scholar
  6. 6.
    Petz, D.: Covariance and Fisher information in quantum mechanics. J. Phys. A 35, 929–939 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Petz, D., Sudár, C.: Geometries of quantum states. J. Math. Phys. 37, 2662–2673 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gibilisco, P., Isola, T.: Wigner–Yanase information on quantum state space: the geometric approach. J. Math. Phys. 44, 3752–3762 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gibilisco, P., Isola, T.: A characterisation of Wigner–Yanase skew information among statistically monotone metrics. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 553–557 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wigner, E.P., Yanase, M.M.: Information contents of distribution. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)Google Scholar
  11. 11.
    Wigner, E.P., Yanase, M.M.: On the positive semidefinite nature of certain matrix expressions. Can. J. Math. 16, 397–406 (1964)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357–362 (1981)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pires, D.P., Céleri, Lucas C., Soares-Pinto, Diogo O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Schrodinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 807–812 (1935)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–560 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 06899–06905 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, 10th edn. Cambridge University Press (2010)Google Scholar
  25. 25.
    Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314-1–032314-11 (2002)Google Scholar
  27. 27.
    Eltschka, C., Tóth, G., Siewert, J.: Partial transpose as a direct link between concurrence and negativity. Phys. Rev. A 91, 032327-1–032327-9 (2015)Google Scholar
  28. 28.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying Coherence. Phys. Rev. Lett. 113, 140401-1–140410-5 (2014)Google Scholar
  29. 29.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401-1–170401-5 (2014)Google Scholar
  30. 30.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 115, 020403-1–020403-6 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Center for Astroparticle Physics and Space ScienceBose InstituteKolkataIndia

Personalised recommendations