Quantum Information Processing

, Volume 15, Issue 1, pp 279–289 | Cite as

A note on one-way quantum deficit and quantum discord



One-way quantum deficit and quantum discord are two important measures of quantum correlations. We revisit the relationship between them in two-qubit systems. We investigate the conditions that both one-way quantum deficit and quantum discord have the same optimal measurement ensembles, and demonstrate that one-way quantum deficit can be derived from the quantum discord for a class of X states. Moreover, we give an explicit relation between one-way quantum deficit and entanglement of formation. We show that under phase damping channel both one-way quantum deficit and quantum discord evolve exactly in the same way for four parameter X states. Some examples are presented in details.


One-way quantum deficit Quantum discord Entanglement of formation 



We thank the anonymous referees for their careful reading and valuable comments. This work is supported by NSFC under Number 11275131.


  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetCrossRefADSMATHGoogle Scholar
  2. 2.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)CrossRefADSGoogle Scholar
  6. 6.
    Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  7. 7.
    Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., De Sen, A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Devetak, I.: Distillation of local purity from quantum states. Phys. Rev. A 71, 062303 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., De Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Wang, Y.K., Ma, T., Li, B., Wang, Z.X.: One-way information deficit and geometry for a class of two-qubit states. Commun. Theor. Phys. 59, 540 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  18. 18.
    Wang, Y.K., Jing, N., Fei, S.M., Wang, Z.X., Cao, J.P., Fan, H.: One-way deficit of two-qubit \(X\) states. Quantum Inf. Process. 14, 2487 (2015)CrossRefADSGoogle Scholar
  19. 19.
    Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Zhu, X.N., Fei, S.M.: One-way unlocalizable information deficit. J. Phys. A Math. Theor. 46, 325303 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)Google Scholar
  22. 22.
    Zurek, W.H.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)CrossRefADSGoogle Scholar
  23. 23.
    Yurischev, M.: On the quantum discord of general \(X\) states. Quantum Inf. Process. 14, 3399 (2015)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)CrossRefADSGoogle Scholar
  25. 25.
    Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. Europhys. Lett. 96, 40005 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Shao, L.H., Xi, Z.J., Li, Y.M.: Remark on the one-way quantum deficit for general two-qubit states. Commun. Theor. Phys. 59, 285 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  27. 27.
    Maldonado-Trapp, A., Hu, A., Roa, L.: Analytical solutions and criteria for the quantum discord of two-qubit \(X\)-states. Quantum Inf. Process. 14, 1947 (2015)CrossRefADSGoogle Scholar
  28. 28.
    Chanda, T., Pal, A.K., Biswas, A., De Sen, A., Sen, U.: Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)CrossRefADSGoogle Scholar
  29. 29.
    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRefADSGoogle Scholar
  31. 31.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations