Advertisement

Quantum Information Processing

, Volume 15, Issue 1, pp 199–213 | Cite as

Atom–photon entanglement beyond the multi-photon resonance condition

  • Zeinab Kordi
  • Saeed Ghanbari
  • Mohammad Mahmoudi
Article

Abstract

Atom–photon entanglement between the dressed atom and its spontaneous emission is studied in a near-degenerate three-level V-type atomic system in multi-photon resonance condition and beyond it. Taking into account the quantum interference due to the spontaneous emission, the density matrix equations of motion are numerically calculated in two-photon resonance condition and beyond it. The dynamical behavior of these two subsystems is investigated by using the von Neumann entropy. We apply the Floquet decomposition to the equations of motion to solve this time-dependent problem and identify the contribution of the different scattering processes to the atom–photon entanglement. In addition, the impact of the various nonlinear effects on the atom–photon entanglement is introduced in two-photon resonance condition. It is shown that the degree of entanglement (DEM) can be controlled via the intensity and the detuning of the coupling field as well as the quantum interference induced by spontaneous emission. We find that vacuum-induced interference has a major role in phase sensitivity of the DEM; however, beyond the two-photon resonance condition the DEM does not depend on the relative phase of the applied fields. Our results can be used for quantum information processing via entanglement.

Keywords

Entanglement Quantum interference Quantum information 

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)CrossRefADSMATHGoogle Scholar
  2. 2.
    Schrodinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935)Google Scholar
  3. 3.
  4. 4.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  6. 6.
    Burgarth, D.K., Facchi, P., Giovannetti, V., Nakazato, H., Pascazio, S., Yuasa, K.: Exponential rise of dynamical complexity in quantum computing through projections. Nat. Commun. 5, 5173 (2014)CrossRefADSGoogle Scholar
  7. 7.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Classical and quantum communication without a shared reference frame. Phys. Rev. Lett. 91(2), 027901 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)CrossRefADSGoogle Scholar
  9. 9.
    Berry, D.W., Sanders, B.C.: Quantum teleportation and entanglement swapping for spin systems. New J. Phys. 4, 8 (2002)MathSciNetADSGoogle Scholar
  10. 10.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correction code. Phys. Rev. Lett. 77, 198–201 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Plenio, M.B., Vedral, V., Knight, P.L.: Quantum error correction in the presence of spontaneous emission. Phys. Rev. A 55, 67–71 (1997)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H., Legr, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)CrossRefGoogle Scholar
  16. 16.
    Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)CrossRefADSMATHGoogle Scholar
  17. 17.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Ekert, A., Josza, R.: Quantum algorithms: entanglement enhanced information processing. Phil. Trans. R. Soc. Lond. A 356, 1769–1782 (1998)CrossRefADSMATHGoogle Scholar
  20. 20.
    Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Linden, N., Popescu, S.: Good dynamics versus bad kinematics: Is entanglement needed for quantum computation? Phys. Rev. Lett. 87, 047901 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Josza, R., Linden, N.: On the role of the entanglement in quantum computational speed-up. Proc. R. Soc. Lond. A 459, 2011–2032 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Nielsen, M.A.: Quantum computation by measurement and quantum memory. Phys. Lett. A. 308, 96–100 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  25. 25.
    Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320, 15–33 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H., Hofferberth, S.: Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)CrossRefADSGoogle Scholar
  27. 27.
  28. 28.
    Keßler, H., Klinder, J., Wolke, M., Hemmerich, A.: Optomechanical atom–cavity interaction in the sub-recoil regime. New J. Phys. 16, 053008 (2014)CrossRefADSGoogle Scholar
  29. 29.
    Sherson, J.F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, Cirac, K.I., Polzik, E.S.: Quantum teleportation between light and matter. Nature 443(7111), 557 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Chen, S., Chen, Y.A., Zhao, B., Yuan, Z.S., Schmiedmayer, J., Pan, J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Li, L., Dudin, Y.O., Kuzmich, A.: Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013)CrossRefADSGoogle Scholar
  32. 32.
    Fang, M.F., Zhu, S.Y.: Entanglement between a \(\Lambda \)-type three-level atom and its spontaneous emission fields. Phys. A 369, 475–483 (2006)CrossRefGoogle Scholar
  33. 33.
    Tang, Z.H., Li, G.X., Ficek, Z.: Entanglement created by spontaneously generated coherence. Phys. Rev. A 82, 063837 (2010)CrossRefADSGoogle Scholar
  34. 34.
    Roshan Entezar, S.: Entanglement of a two-level atom and its spontaneous emission near the edge of a photonic band gap. Phys. Lett. A 373, 3413–3418 (2009)CrossRefADSMATHGoogle Scholar
  35. 35.
    Mortezapour, A., Abedi, M., Mahmoudi, M., Khajehpour, M.R.H.: The effect of a coupling field on the entanglement dynamics of a three-level atom. J. Phys. B 44, 085501 (2011)CrossRefADSGoogle Scholar
  36. 36.
    Ficek, Z., Rudolph, T.: Quantum interference in a driven two-level atom. Phys. Rev. A 60, R4245 (1999)CrossRefADSGoogle Scholar
  37. 37.
    Agarwal, G.S.: Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Hohler, G. (Ed.) Springer Tracts in Modern Physics, vol. 70. Springer, Berlin (1974)Google Scholar
  38. 38.
    Joshi, A., Yang, W., Xiao, M.: Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A 68, 015806 (2003)CrossRefADSGoogle Scholar
  39. 39.
    Mousavi, S.M., Safari, L., Mahmoudi, M., Sahrai, M.: Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition. J. Phys. B: At. Mol. Opt. Phys. 43, 165501 (2010)CrossRefADSGoogle Scholar
  40. 40.
    Sahrai, M., Noshad, H., Mahmoudi, M.: Entanglement of an atom and its spontaneous emission fields via spontaneously generated coherence. J. Sci. Islam. Repub. Iran 22, 171–176 (2011)Google Scholar
  41. 41.
    Roshan Entezar, S.: Disentanglement of atom–photon via quantum interference in driven three-level atoms. Opt. Comm. 282, 1171–1174 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Abazari, M., Mortezapour, A., Mahmoudi, M., Sahrai, M.: Phase-controlled atom–photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541–1554 (2011)CrossRefADSMATHGoogle Scholar
  43. 43.
    Mortezapour, A., Kordi, Z., Mahmoudi, M.: Phase-controlled atom–photon entanglement in a three-level \(\Lambda \)-type closed-loop atomic system. Chin. Phys. B 22, 060310 (2013)CrossRefGoogle Scholar
  44. 44.
    Kordi, Z., Ghanbari, S., Mahmoudi, M.: Maximal atom–photon entanglement in a double-\(\Lambda \) quantum system. Quantum Inf. Process. 14, 1907–1918 (2015)CrossRefADSGoogle Scholar
  45. 45.
    Mahmoudi, M., Evers, J.: Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Phys. Rev. A 74, 063827 (2006)CrossRefADSGoogle Scholar
  46. 46.
    Floquet, M.G.: Sur les équationsdifférentielleslinéaires à coefficients périodiques. Ann. Sci. Ec. Norm. Super. 12, 47 (1883)MathSciNetMATHGoogle Scholar
  47. 47.
    Karimi, E., Boyd, R.W.: Ten years of Nature physics; slowly but surely. Nat. Phys. 11, 15–16 (2015)CrossRefGoogle Scholar
  48. 48.
    Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)CrossRefADSGoogle Scholar
  49. 49.
    Wong, V., Boyd, R.W., Stroud, C.R., Ryan Jr, Bennink, S., Aronstein, D.L.: Absorptionless self-phase-modulation via dark-state electromagnetically induced transparency. Phys. Rev. A 65, 013810 (2001)CrossRefADSGoogle Scholar
  50. 50.
    Kaltenhauser, B., Kubler, H., Chromik, A., Stuhler, J., Pfau, T., Imamoglu, A.: Narrow bandwidth electromagnetically induced transparency in optically trapped atoms. J. Phys. B: At. Mol. Opt. Phys. 40, 1907 (2007)CrossRefADSGoogle Scholar
  51. 51.
    Zhao, J., Wang, L., Xiao, L., Zhao, Y., Yin, W., Jia, S.: Experimental measurement of absorption and dispersion in V-type cesium atom. Opt. Comm. 206, 341–345 (2002)CrossRefADSGoogle Scholar
  52. 52.
    Chu, S.I., Telnov, D.A.: Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Phys. Rep. 390, 1–131 (2004)MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    Jungnitsch, B., Evers, J.: Parametric and nonparametric magnetic response enhancement via electrically induced magnetic moments. Phys. Rev. A 78, 043817 (2008)CrossRefADSGoogle Scholar
  54. 54.
    Hu, X.-M., Du, D., Cheng, G.-L., Zou, J.-H., Li, X.: Switching from positive to negative dispersion in a three-level V system driven by a single coherent field. J. Phys. B: At. Mol. Opt. Phys. 38, 827–838 (2005)CrossRefADSGoogle Scholar
  55. 55.
    Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)CrossRefADSGoogle Scholar
  56. 56.
    Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Phoenix, S.J.D., Knight, P.L.: Fluctuation and entropy in models of quantum optical resonance. Ann. Phys. 186, 381–407 (1988)CrossRefADSMATHGoogle Scholar
  58. 58.
    Loss, M., Ruskai, M.B.: Inequalities: Selecta of Elliott H. Lieb. Springer, Berlin (2002)CrossRefGoogle Scholar
  59. 59.
    Mahmoudi, M., Tajalli, H., Zubairy, M.S.: Measurement of Wigner function of a cavity field via Autler–Townes spectroscopy. J. Opt. B 2, 315–322 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zeinab Kordi
    • 1
  • Saeed Ghanbari
    • 1
  • Mohammad Mahmoudi
    • 1
  1. 1.Department of PhysicsUniversity of ZanjanZanjanIran

Personalised recommendations