Skip to main content
Log in

Transferring multipartite entanglement among different cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The transfer of quantum entanglement (or quantum coherence) is not only fundamental in quantum mechanics but also important in quantum information processing. We here propose a way to achieve the coherent transfer of W-class entangled states of qubits among different cavities. Because no photon is excited in each cavity, decoherence caused by the photon decay is suppressed during the transfer. In addition, only one coupler qubit and one operational step are needed and no classical pulses are used in this proposal; thus, the engineering complexity is much reduced and the operation is greatly simplified. We further give a numerical analysis showing that high-fidelity transfer of a three-qubit W state is feasible within the present circuit QED technique. The proposal can be applied to a wide range of physical implementations with various qubits such as quantum dots, nitrogen vacancy centers, atoms, and superconducting qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  2. Greenberger, D.M., et al.: Bells theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Joo, J., et al.: Quantum secure communication with \(W\) states (2002). arXiv:quant-ph/0204003

  4. Gorbachev, V.N., et al.: Can the states of the \(W\)-class be suitable for teleportation? Phys. Lett. A 314, 267 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Joo, J., et al.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon \(W\) state. Phys. Rev. A 66, 044302 (2002)

    Article  ADS  Google Scholar 

  7. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled \(W\) state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    Article  ADS  Google Scholar 

  8. Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)

    Article  ADS  Google Scholar 

  9. Xue, P., Guo, G.C.: Scheme for preparation of mulipartite entanglement of atomic ensembles. Phys. Rev. A 67, 034302 (2003)

    Article  ADS  Google Scholar 

  10. Biswas, A., Agarwal, G.S.: Preparation of \(W\), GHZ, and two-qutrit states using bimodal cavities. J. Mod. Opt. 51, 1627 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Song, K.H., Zhou, Z.W., Guo, G.C.: Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition. Phys. Rev. A 71, 052310 (2005)

    Article  ADS  Google Scholar 

  12. Song, K.H., Xiang, S.H., Liu, Q., Lu, D.H.: Quantum computation and \(W\)-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys. Rev. A 75, 032347 (2007)

    Article  ADS  Google Scholar 

  13. Zhang, X.L., Gao, K.L., Feng, M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    Article  ADS  Google Scholar 

  14. Deng, Z.J., Gao, K.L., Feng, M.: Generation of \(N\)-qubit \(W\) states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    Article  ADS  Google Scholar 

  15. Li, G.X.: Generation of pure multipartite entangled vibrational states for ions trapped in a cavity. Phys. Rev. A 74, 055801 (2006)

    Article  ADS  Google Scholar 

  16. Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger–Horne–Zeilinger and \(W\) states of three distant atoms. Phys. Rev. A 75, 044301 (2007)

    Article  ADS  Google Scholar 

  17. Sharma, S.S., Almeida, E., Sharma, N.K.: Multipartite entanglement of three trapped ions in a cavity and \(W\)-state generation. J. Phys. B 41, 165503 (2008)

    Article  Google Scholar 

  18. Perez-Leija, A., Hernandez-Herrejon, J.C., Moya-Cessa, H.: Generating photon-encoded \(W\) states in multiport waveguide-array systems. Phys. Rev. A 87, 013842 (2013)

    Article  ADS  Google Scholar 

  19. Gao, Y., Zhou, H., Zou, D., Peng, X., Du, J.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87, 032335 (2013)

    Article  ADS  Google Scholar 

  20. Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of large W states in optical cavities. Phys. Rev. A 87, 042323 (2013)

    Article  ADS  Google Scholar 

  21. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Koärber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature (London) 438, 643 (2005)

    Article  ADS  Google Scholar 

  22. Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.J.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764 (2009)

    Article  ADS  Google Scholar 

  23. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature (London) 467, 570 (2010)

    Article  ADS  Google Scholar 

  24. Altomare, F., Park, J.I., Cicak, K., Sillanpaa, M.A., Allman, M.S., Li, D., Sirois, A., Strong, J.A., Whittaker, J.D., Simmonds, R.W.: Tripartite interactions between two phase qubits and a resonant cavity. Nat. Phys. 6, 777 (2010)

    Article  Google Scholar 

  25. Choi, K.S., Goban, A., Papp, S.B., van Enk, S.J., Kimble, H.J.: Entanglement of spin waves among four quantum memories. Nature (London) 468, 412 (2010)

    Article  ADS  Google Scholar 

  26. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  27. Hong, L., Guo, G.C.: Teleportation of a two-particle entangled state via entanglement swapping. Phys. Lett. A 276, 209 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Yang, C.P., Guo, G.C.: A proposal of teleportation for three-particle entangled state. Chin. Phys. Lett. 16, 628 (1999)

    Article  ADS  Google Scholar 

  29. Paternostro, M., Son, W., Kim, M.S.: Complete conditions for entanglement transfer. Phys. Rev. Lett. 92, 197901 (2004)

    Article  ADS  Google Scholar 

  30. Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Long quantum channels for high-quality entanglement transfer. New J. Phys. 13, 123006 (2011)

    Article  ADS  Google Scholar 

  31. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. Wu, Q.Q., Xu, L., Tan, Q.S., Yan, L.L.: Multipartite entanglement transfer in a hybrid circuit-QED system. Int. J. Theor. Phys. 51, 5 (2012)

    Google Scholar 

  33. Bina, M., Casagrande, F., Lulli, A., Genont, M.G., Paris, G.A.M.: Entanglement transfer in a multipartite cavity QED open system. Int. J. Quantum Inf. 09, 83 (2011)

    Article  Google Scholar 

  34. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001)

    Article  ADS  Google Scholar 

  35. Jennewein, T., Weihs, G., Pan, J.W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001)

    Article  ADS  Google Scholar 

  36. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031 (2008)

    Article  ADS  Google Scholar 

  37. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., OConnell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Article  Google Scholar 

  38. Han, S., Lapointe, J., Lukens, J.E.: Single-Electron Tunneling and Mesoscopic Devices, Springer Series in Electronics and Photonics, vol. 31. Springer, Berlin (1991)

    Google Scholar 

  39. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  40. James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)

    Article  ADS  Google Scholar 

  41. Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)

    Article  ADS  Google Scholar 

  42. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  43. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42 (2005)

    Article  Google Scholar 

  44. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature (London) 474, 589 (2011)

    Article  ADS  Google Scholar 

  45. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  46. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  47. Yang, C.P., Chu, S.-I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  48. Schreier, J.A., et al.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008)

    Article  ADS  Google Scholar 

  49. Chang, J.B., et al.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  50. Paik, H., et al.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  51. Chow, J.M., et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  52. Yang, C.P., Su, Q.P., Han, S.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  53. Su, Q.P., Yang, C.P., Zheng, S.B.: Fast and simple scheme for generating NOON states of photons in circuit QED. Sci. Rep. 4, 3898 (2014)

    ADS  Google Scholar 

  54. Baur, M., Fedorov, A., Steffen, L., Filipp, S., da Silva, M.P., Wallraff, A.: Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness. Phys. Rev. Lett. 108, 040502 (2012)

    Article  ADS  Google Scholar 

  55. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature (London) 481, 170 (2012)

    Article  ADS  Google Scholar 

  56. Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)

    Article  ADS  Google Scholar 

  57. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

C.P.Y. was supported in part by the National Natural Science Foundation of China under Grant Nos. 11074062 and 11374083, the Zhejiang Natural Science Foundation under Grant No. LZ13A040002, and the Funds from Hangzhou Normal University under Grant Nos. HSQK0081 and PD13002004. Q.P.S. was supported in part by the National Natural Science Foundation of China under Grant Nos. 11504075 and 11247008 and the Zhejiang Natural Science Foundation under Grant No. LQ12A05004. This work was also supported by the Funds of Hangzhou City for the Hangzhou City Quantum Information and Quantum Optics Innovation Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, QP., Liu, T. & Yang, CP. Transferring multipartite entanglement among different cavities. Quantum Inf Process 15, 215–231 (2016). https://doi.org/10.1007/s11128-015-1153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1153-3

Keywords

Navigation