Skip to main content
Log in

Playing quantum games by a scheme with pre- and post-selection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to play quantum games by assuming that the two players interact with each other. Thus, by pre-selection, two players can choose their initial states, and some dilemma in classical game may be removed by post-selection, which is particularly useful for the cooperative games. We apply the proposal to both of BoS and Prisoners’ dilemma games in cooperative situations. The examples show that the proposal would guarantee a remarkably binding agreement between two parties. Any deviation during the game will be detected, and the game may be abnegated. By illuminating the examples, we find that the initial state in the cooperative game does not destroy process to get preferable payoffs by pre- and post-selections, which is not true in other schemes for implementing the quantum game. We point out that one player can use the scheme to detect his opponent’s choices if he is advantageous in information theory and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  2. Nash, J.F.: The bargaining problem. Econometrica 18, 155–162 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nash, J.F.: Equilibrium points in N-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nash, J.F.: Essays on Game Theory. Edward Elgar Publishing, Cheltenham (1996)

    Google Scholar 

  6. Okada, A.: The Nash bargaining solution in general n-person cooperative games. J. Econ. Theory 145, 2356–C2379 (2010)

    Article  MATH  Google Scholar 

  7. Turner, P.E., Chao, L.: Prisoner’s Dilemma in an RNA virus. Nature 398, 441–443 (1999)

    Article  ADS  Google Scholar 

  8. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Eiset, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Eisert, J., Wilkins, M.: Quantum games. J. Mod. Opt. 47, 2543–2556 (2000)

    Article  ADS  MATH  Google Scholar 

  11. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 37, 11457 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Arfi, B.: Resolving the trust predicament: a quantum game-theoretic approach. Theory Decis. 59, 127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benjamin, S.C.: Comment on “A quantum approach to static games of complete information”. Phys. Lett. A 277, 180–182 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Han, R.: Remark on Quantum Battle of the Sexes Game. Working Paper, arXiv:quant-ph/010300v1 (2001)

  16. Du, J., Xu, X., Li, H., Zhou, X., Han, R.: Nash Equilibrium in the Quantum Battle of Sexes Game. Working Paper, arXiv:quant-ph/0010050 (2000)

  17. Marinatto, L., Weber, T.: Reply to “Comment on: a quantum approach to static games of complete information”. Phys. Lett. A 277, 183 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 37, 4437–4443 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Frackiewicz, P.: The ultimate solution to the quantum battle of the sexes game. J. Phys. A Math. Theor. 42, 365305 (2009)

    Article  MathSciNet  Google Scholar 

  20. Chen, K.Y., Hogg, T.: How well do people play a quantum Prisoner’s Dilemma? Quantum Inf. Process. 5, 43–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, K.Y., Ang, H., Kiang, D., Kwek, L.C., Lo, C.F.: Quantum Prisoner Dilemma under decoherence. Phys. Lett. A 316, 317–323 (2003)

    Article  ADS  MATH  Google Scholar 

  22. Cheon, T.: Altruistic contents of quantum Prisoner’s Dilemma. Europhys. Lett. 69, 149–155 (2005)

    Article  ADS  Google Scholar 

  23. Du, J., Ju, C., Li, H.: Quantum entanglement helps in improving economic efficiency. J. Phys. A Math. Gen. 38, 1559–1565 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Du, J., Xu, X., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 289, 9–15 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Du, J., Xu, X., Li, H., Zhou, X., Han, R.: Playing Prisoner’s Dilemma with quantum rules. Fluct. Noise Lett. 2, R189–R203 (2002)

    Article  MathSciNet  Google Scholar 

  26. Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36, 6551–6562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ichikawa, T., Tsutsui, I.: Duality, phase structures, and dilemmas in symmetric quantum games. Ann. Phys. 322, 531–551 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Ichikawa, T., Tsutsui, I., Cheon, T.: Quantum Game Theory Based on the Schmidt Decomposition: Can Entanglement Resolve Dilemmas? Working Paper. arXiv:quant-ph/0702167 (2007)

  29. Iqbal, A.: Quantum Games with a Multi-Slit Electron Diffraction Setup. Working Paper, arXiv:quant-ph/0207078 (2002)

  30. Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 52328 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  31. Iqbal, A., Toor, A.H.: Quantum repeated games. Phys. Rev. A 300, 541–546 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Özdemir, S.K., Shimamura, J., Imoto, N.: Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games. Phys. Lett. A 325, 104 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Sousa, P.B., Ramos, R.V., Tarcísio Costa Filho, J.: New Models of Quantum Games. Working Paper, arXiv:quant-ph/0608131 (2006)

  34. Piotrowskia, E.W., Sładkowskib, J.: Quantum market games. Phys. A 312, 208 (2002)

    Article  MathSciNet  Google Scholar 

  35. Lee, C.F., Johnson, N.F.: Efficiency and formalism of quantum games. Phys. Rev. A 67, 022311 (2003)

    Article  ADS  Google Scholar 

  36. Özdemir, S.K., Shimamura, J., Imoto, N.: A necessary and sufficient condition to play games in quantum mechanical settings. New J. Phys. 9, 43 (2007)

    Article  Google Scholar 

  37. Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103–108 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Ma, Y.J., Long, G.L., Deng, F.G., Li, F., Zhang, S.X.: Cooperative three- and four-player quantum games. Phys. Lett. A 301, 117–124 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Flitney, A.P., Greentree, A.D.: Coalitions in the quantum minority game: classical cheats and quantum bullies. Phys. Lett. A 362, 132–137 (2007)

    Article  ADS  MATH  Google Scholar 

  40. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  41. Smith, J.M.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  42. Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Quantum and classical correlations between players in game theory. Int. J. Quantum Inf. 2, 79 (2004)

    Article  MATH  Google Scholar 

  43. Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell Pub, Oxford (2001)

    Google Scholar 

  44. Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Entangled states that cannot reproduce original classical games in their quantum version. Phys. Lett. A 328, 20 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-\(\frac{1}{2}\) particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  ADS  Google Scholar 

  46. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Book  Google Scholar 

  47. Aharonov, Y., Cohen, E., Ben-Moshe, S.: Unusual Interactions of Pre-and-Post-Selected Particles. arXiv:1208.3203 [quant-ph] (2012)

  48. Sugiyama, T., Turner, T.S., Murao, M.: Precision-guaranteed quantum tomography. Phys. Rev. Lett. 111, 160406 (2013)

    Article  ADS  Google Scholar 

  49. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011)

    Article  Google Scholar 

  50. Lundeen, J.S., Bamber, C.: Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    Article  ADS  Google Scholar 

  51. Wu, S.: State tomography via weak measurements. Sci. Rep. 3, 1193 (2013)

    ADS  Google Scholar 

  52. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46, 318–332 (2008)

    Article  Google Scholar 

  53. Johnson, N.F.: Playing a quantum game with a corrupted source. Phys. Rev. A 63, 020302(R) (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are obliged to Professor Shengjun Wu’s fruitful discussion. This work is partially supported by the State Key Program for Basic Research of China SKPBR of China (2011CB922104, 2011CBA00205), NSFC (91021003, 91321310, 11274156), and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Fu Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, GF., Yu, Y. Playing quantum games by a scheme with pre- and post-selection. Quantum Inf Process 15, 147–165 (2016). https://doi.org/10.1007/s11128-015-1151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1151-5

Keywords

Navigation