Skip to main content
Log in

Abstract

There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work, we focus on the equivalence of two of them, known as Szegedy’s and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for searching marked vertices. Using this formal definition, we prove that any instance of Szegedy’s model is equivalent to an instance of the staggered model. On the other hand, we show that there are instances of the staggered model that cannot be cast into Szegedy’s framework. Our analysis also works when there are marked vertices. We show that Szegedy’s spatial search algorithms can be converted into search algorithms in staggered QWs. We take advantage of the similarity of those models to define the quantum hitting time in the staggered model and to describe a method to calculate the eigenvalues and eigenvectors of the evolution operator of staggered QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. N can be infinite.

  2. Given a line graph \(\Gamma '\), there is only one bipartite graph \(\Gamma \) such that \(L(\Gamma )=\Gamma '\) [24].

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)

    Article  MATH  ADS  Google Scholar 

  3. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 32–41 (2004)

  5. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004)

  6. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for quantum walks. In: Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, pp. 540–551, (2010)

  8. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mosca, M.: Quantum algorithms. In: Meyers, Robert A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7088–7118. Springer, New York (2009)

    Chapter  Google Scholar 

  10. Higuchi, Yusuke, Konno, Norio, Sato, Iwao, Segawa, Etsuo: Spectral and asymptotic properties of grover walks on crystal lattices. J. Funct. Anal. 267(11), 4197–4235 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Santha, M.: Quantum walk based search algorithms. In: Proceedings of the 5th Theory and Applications of Models of Computation (TAMC08), pp. 31–46 (2008)

  12. Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. Patel, A., Raghunathan, K.S., Rahaman, MdA: Search on a hypercubic lattice using a quantum random walk. ii. \(d=2\). Phys. Rev. A 82, 032331 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Falk, M.: Quantum search on the spatial grid. arXiv:1303.4127, (2013)

  15. Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory. Quantum Inf. Comput. 15, 1233–1247 (2015)

    Google Scholar 

  16. Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A 91, 052319 (2015)

    Article  ADS  Google Scholar 

  17. Santos, R.A.M., Portugal, R., Boettcher, S.: Moments of coinless quantum walks on lattices. Quantum Inf. Process. 14(9), 3179–3191 (2015)

  18. Hamada, M., Konno, N., Segawa, E.: Relation between coined quantum walks and quantum cellular automata. RIMS Kokyuroku 1422, 1–11 (2005)

    Google Scholar 

  19. Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of computing, pp. 50–59 (2000)

  21. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  22. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  23. Portugal, Renato: Quantum Walks and Search Algorithms. Springer, New York (2013)

    Book  MATH  Google Scholar 

  24. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54(1), 150–168 (1932)

    Article  MathSciNet  Google Scholar 

  25. Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics. Perseus Books, New York (1994)

    Google Scholar 

  26. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theory 9(2), 129–135 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  27. Krausz, J.: Démonstration nouvelle d’une théorème de Whitney sur les réseaux. Mat. Fiz. Lapok 50, 75–85 (1943)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

RP acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grants Nos. 304709/2011-5, 474143/2013-9, and 400216/2014-0). RAMS acknowledges financial support from Capes/Faperj E-45/2013. RP thanks helpful discussions with Stefan Boettcher and Andris Ambainis’ group. The authors thank the anonymous referees for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portugal, R., Santos, R.A.M., Fernandes, T.D. et al. The staggered quantum walk model. Quantum Inf Process 15, 85–101 (2016). https://doi.org/10.1007/s11128-015-1149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1149-z

Keywords

Navigation