Skip to main content
Log in

Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper the density matrices derived from combinatorial Laplacian matrix of graphs is considered. More specifically, the paper places emphasis on the star-relevant graph, which means adding certain edges on peripheral vertices of star graph. Initially, we provide the spectrum of the density matrices corresponding to star-like graph (i.e., adding an edge on star graph) and present that the Von Neumann entropy increases under the graph operation (adding an edge on star graph) and the graph operation cannot be simulated by local operation and classical communication (LOCC). Subsequently, we illustrate the spectrum of density matrices corresponding to star-alike graph (i.e., adding one edge on star-like graph) and exhibit that the Von Neumann entropy increases under the graph operation (adding an edge on star-like graph) and the graph operation cannot be simulated by LOCC. Finally, the spectrum of density matrices corresponding to star-mlike graph (i.e., adding m nonadjacent edges on the peripheral vertices of star graph) is demonstrated and the relation between the graph operation and Von Neumann entropy, LOCC is revealed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2, p. 5. Princeton University Press, Princeton (1955)

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, . pp. 101573–101578. Cambridge University Press, Cambridge (2010)

  3. Balachandran, A.P., et al.: Algebraic approach to entanglement and entropy. Phys. Rev. A 88(2), 022301 (2013)

    Article  ADS  Google Scholar 

  4. Adhikari, B., Adhikari, S., Banerjee, S.: Graph representation of quantum states. arXiv preprint arXiv:1205.2747 (2012)

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Liu, X.S., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chen, X.-B., et al.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(03), 543–551 (2008)

    Article  MATH  Google Scholar 

  12. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, B., Lai, H.-J.: Matrices in Combinatorics and Graph Theory, vol. 3. Springer Science & Business Media, New York (2013)

    Google Scholar 

  14. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer Science & Business Media, New York (2011)

    MATH  Google Scholar 

  15. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  16. Kocay, W., Kreher, D.L.: Graphs, Algorithms, and Optimization. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  17. Hein, M., et al.: Entanglement in graph states and its applications. arXiv preprint quant-ph/0602096 (2006)

  18. Braunstein, S.L., Ghosh, S., Severini, S.: The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hildebrand, R., Mancini, S., Severini, S.: Combinatorial laplacians and positivity under partial transpose. Math. Struct. Comput. Sci. 18(01), 205–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassan, A., Saif, M., Joag, P.S.: A combinatorial approach to multipartite quantum systems: basic formulation. J. Phys. A Math. Theor. 40(33), 10251 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hassan, A., Saif, M., Joag, P.S.: On the degree conjecture for separability of multipartite quantum states. J. Math. Phys. 49(1), 012105 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Wu, C.W.: Conditions for separability in generalized Laplacian matrices and diagonally dominant matrices as density matrices. Phys. Lett. A 351(1), 18–22 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Wu, C.W.: On graphs whose Laplacian matrixs multipartite separability is invariant under graph isomorphism. Discret. Math. 310(21), 2811–2814 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hassan, A., Saif M.: Detection and Quantification of Entanglement in Multipartite Quantum Systems Using Weighted Graph and Bloch Representation of States. arXiv preprint arXiv:0905.0312 (2009)

  25. Passerini, F., Severini, S.: The von Neumann entropy of networks. Available at SSRN 1382662 (2008)

  26. Watrous, J.: Theory of Quantum Information, p. 128. University of Waterloo Fall, Waterloo (2011)

  27. Horn, R.A., Johnson, C.R.: Matrix Analysis, pp. 387. Cambridge University Press, Cambridge (2012)

  28. Chitambar, E., et al.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328(1), 303–326 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nielsen, M.A., Vidal, G.: Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 1(1), 76–93 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Marshall, A.W., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its Applications. Springer Science & Business Media, New York (2010)

    MATH  Google Scholar 

Download references

Acknowledgments

This project was supported by NSFC (Grant Nos. 61272514, 61170272, 61121061, 61411146001,61202082), NCET (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012) and the Fok Ying Tung Education Foundation (Grant No. 131067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JQ., Chen, XB. & Yang, YX. Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph. Quantum Inf Process 14, 4691–4713 (2015). https://doi.org/10.1007/s11128-015-1134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1134-6

Keywords

Navigation