Advertisement

Quantum Information Processing

, Volume 14, Issue 12, pp 4361–4394 | Cite as

Properties of long quantum walks in one and two dimensions

  • Hao Luo
  • Peng Xue
Article

Abstract

The quantum walk (QW) is the term given to a family of algorithms governing the evolution of a discrete quantum system and as such has a founding role in the study of quantum computation. We contribute to the investigation of QW phenomena by performing a detailed numerical study of discrete-time quantum walks. In one dimension (1D), we compute the structure of the probability distribution, which is not a smooth curve but shows oscillatory features on all length scales. By analyzing walks up to N = 1,000,000 steps, we discuss the scaling characteristics and limiting forms of the QW in both real and Fourier space. In 2D, with a view to ready experimental realization, we consider two types of QW, one based on a four-faced coin and the other on sequential flipping of a single two-faced coin. Both QWs may be generated using two two-faced coins, which in the first case are completely unentangled and in the second are maximally entangled. We draw on our 1D results to characterize the properties of both walks, demonstrating maximal speed-up and emerging semi-classical behavior in the maximally entangled QW.

Keywords

Discrete-time quantum walk Structure of probability distribution Scaling characteristics Pseudo-binomial distribution on the edge of two dimensional quantum walk 

Notes

Acknowledgments

The authors gratefully acknowledge helpful discussions with Professor B. Normand. Work at Renmin University was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11174365 and by the National Basic Research Program of China (NBRPC) under Grant No. 2012CB921704. PX was supported by the NSFC under Grant Nos. 11174052 and 11474049, by the NBRPC under Grant No. 2011CB921203, by the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, and by the CAST Innovation Fund.

References

  1. 1.
    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)CrossRefADSGoogle Scholar
  3. 3.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Kendon, V.: A random walk approach to quantum algorithms. Phil. Trans. R. Soc. A 364, 3407 (2006)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 03, pp. 59–68 (2003)Google Scholar
  7. 7.
    Kempe, J.: Discrete quantum walks hit exponentially faster. In: Proceedings of the 7th International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM03), pp. 354–369 (2003)Google Scholar
  8. 8.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of 16th ACM-SIAM SODA, pp. 1099–1108 (2005)Google Scholar
  9. 9.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC, vol. 01, pp. 37–49 (2001)Google Scholar
  10. 10.
    Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67, 052317 (2003)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85, 022307 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Xue, P.: Implementation of multi-walker quantum walks with cavity grid. J. Comput. Theor. Nanosci. 10, 1606–1612 (2013)CrossRefGoogle Scholar
  15. 15.
    Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A Math. Gen. 35, 2745 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    Zhang, R., Xue, P.: Two-dimensional quantum walk with position-dependent phase defects. Quantum Inf. Process. 13, 1825–1839 (2014)MathSciNetCrossRefADSMATHGoogle Scholar
  17. 17.
    Di Franco, C., McGettrick, M., Machida, T., Busch, T.: Alternate two-dimensional quantum walk with a single-qubit coin. Phys. Rev. A 84, 042337 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Di Franco, C., McGettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional grover walk with a single-qubit coin. Phys. Rev. Lett. 106, 080502 (2011)CrossRefGoogle Scholar
  19. 19.
    Do, B., Stohler, M.L., Balasubramanian, S., Elliott, D.S., Eash, C., Fischbach, E., Fischbach, M.A., Mills, A., Zwickl, B.: Experimental realization of a quantum quincunx by use of linear optical elements. J. Opt. Soc. Am. B 22, 499–504 (2005)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Schreiber, A., Cassemiro, K.N., Potoc̆ek, V., G’abris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Zhang, P., Ren, X.F., Zou, X.B., Liu, B.H., Huang, Y.F., Guo, G.C.: Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons. Phys. Rev. A 75, 052310 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys. Rev. A 81, 052322 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)CrossRefGoogle Scholar
  26. 26.
    Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete–time quantum random walk on an nmr quantum-information processor. Phys. Rev. A 72, 062317 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Stefanak, M., Potoc̈ek, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2d quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)CrossRefADSGoogle Scholar
  29. 29.
    Xue, P., Zhang, R., Qin, H., Zhan, X., Bian, Z.H., Li, J., Sanders, B.C.: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114, 140502 (2015)CrossRefADSGoogle Scholar
  30. 30.
    Bian, Z., Li, J., Qin, H., Zhan, X., Zhang, R., Sanders, B.C., Xue, P.: Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk. Phys. Rev. Lett. 114, 203602 (2015)CrossRefADSGoogle Scholar
  31. 31.
    Xue, P., Qin, H., Tang, B., Sanders, B.C.: Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space. New J. Phys. 16, 053009 (2014)CrossRefADSGoogle Scholar
  32. 32.
    Xue, P., Qin, H., Tang, B., Sanders, B.C.: Trapping photons on the line: controllable dynamics of a quantum walk. Sci. Rep. 4, 04825 (2014)ADSGoogle Scholar
  33. 33.
    Marquezino, F., Portugal, R.: The QWalk simulator of quantum walks. Comput. Phys. Commun. 179, 359–369 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  34. 34.
    Sawerwain, M., Gielerak, R.: GPGPU based simulations for one and two dimensional quantum walks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks, pp. 29–38. Springer, Berlin (2010)Google Scholar
  35. 35.
    Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57, 1179 (2005)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)CrossRefADSGoogle Scholar
  37. 37.
    Oliveira, A.C., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006)CrossRefADSGoogle Scholar
  38. 38.
    Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)CrossRefADSGoogle Scholar
  39. 39.
    Roldán, E., Di Franco, C., Silva, F., de Valcárcel, G.J.: N-dimensional alternate coined quantum walks from a dispersion-relation perspective. Phys. Rev. A 87, 022336 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsRenmin UniversityBeijingPeople’s Republic of China
  2. 2.Department of PhysicsSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations