Quantum Information Processing

, Volume 14, Issue 11, pp 4255–4262 | Cite as

Tripartite operation sharing with a six-particle maximally entangled state

  • Jian Peng


A three-party quantum operation-sharing scheme is proposed that uses a six-particle maximally entangled state, the same state used in Helwig et al.’s quantum secret sharing scheme. The security of the proposed scheme is analyzed, and the essential role of the six-particle state in this quantum task is explained. Also, a symmetry feature for sharers and the scheme determinancy is identified. Finally, the experimental feasibility of the proposed protocol is discussed and confirmed, and the protocol is compared with competing protocols.


Quantum operation sharing Tripartite scheme Six-particle maximally entangled state 



This work was supported by the Twelfth Five Year Plan Project of GuangDong Province (GD13XGL29), Science and technology plan project of Guangdong Province (2013B070206076), Ordinary university characteristics innovation projects of GuangDong Province, and the planning project of ShaoGuan (Z2013018).


  1. 1.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetCrossRefADSMATHGoogle Scholar
  2. 2.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefADSMATHGoogle Scholar
  4. 4.
    Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)CrossRefADSMATHGoogle Scholar
  5. 5.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Xie, C.M., et al.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 814 (2015)Google Scholar
  14. 14.
    Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ji, Q.B., et al.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)CrossRefADSMATHGoogle Scholar
  16. 16.
    Xing, H., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)MathSciNetCrossRefADSMATHGoogle Scholar
  17. 17.
    Ji, Q.B., et al.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  18. 18.
    Wang, S.F., Liu, Y.M., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  19. 19.
    Liu, D.C., Liu, Y.M., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process. 12, 3527 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  20. 20.
    Ye, B.L., et al.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Helwig, W., et al.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Information Sciences and EngineeringShaoguan UniversityShaoguanChina

Personalised recommendations