Quantum Information Processing

, Volume 14, Issue 10, pp 3739–3755 | Cite as

Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model



After presenting an exact analytical solution of time-dependent Schrödinger equation, we study the dynamics of entanglement for a two-qubit Ising model. One of the spin qubits is driven by a static magnetic field applied in the direction of the Ising interaction, while the other is coupled with a rotating magnetic field. We also investigate how the entanglement can be controlled by changing the external parameters. Because of the important role of maximally entangled Bell states in quantum communication, we focus on the generalized Bell states as the initial states of the system. It is found that the entanglement evolution is independent of the initial Bell states. Moreover, we can preserve the initial maximal entanglement by adjusting the angular frequency of the rotating field or controlling the exchange coupling between spin qubits. Besides, our calculation shows that the entanglement dynamics is unaffected by the static magnetic field imposed in the direction of the Ising interaction. This is an interesting result, because, as we shall show below, this driving field can be used to control and manipulate the noncyclic geometric phase without affecting the system entanglement. Besides, the nonadiabatic and noncyclic geometric phase for evolved states of the present system are calculated and described in detail. In order to identify the unusable states for quantum communication, completely deviated from the initial maximally entangled states, we also study the fidelity between the initial Bell state and the evolved state of the system. Interestingly, we find that these unusable states can be detected by geometric quantum computation.


Two-qubit Ising model Entanglement Concurrence Geometric phase Fidelity 



We wish to acknowledge the financial support of the MSRT of Iran and Urmia University (93/S/008).


  1. 1.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)CrossRefADSMathSciNetMATHGoogle Scholar
  2. 2.
    Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Samuel, J., Bhandari, B.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. I. General formalism. Ann. Phys. 228, 205–268 (1993)MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    Jain, S.R., Pati, A.K.: Adiabatic geometric phases and response functions. Phys. Rev. Lett. 80, 650–653 (1998)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Sjöqvist, E., Hedström, M.: Noncyclic geometric phase, coherent states, and the time-dependent variational principle; Application to coupled electron-nuclear dynamics. Phys. Rev. A 56, 3417–3424 (1997)CrossRefADSGoogle Scholar
  7. 7.
    de Polavieja, G.G.: Noncyclic geometric phase shift for quantal revivals. Phys. Rev. Lett. 81, 1–5 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Amniat-Talab, M., Rangani Jahromi, H.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski-Moriya interaction in magnetic field. Quantum Inf. Process 12, 1185–1199 (2013)CrossRefADSMATHGoogle Scholar
  9. 9.
    Rangani Jahromi, H., Amniat-Talab, M.: Geometric phase, entanglement, and quantum fisher information near the saturation point. Ann. Phys. 355, 299–312 (2015)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    Solinas, P., Zanardi, P., Zanghi, N., Rossi, F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B 67, 121307 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000). (London)CrossRefADSGoogle Scholar
  12. 12.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  13. 13.
    Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Nagasawa, F., Takagi, J., Kunihashi, Y., Kohda, M., Nitta, J.: Experimental demonstration of spin geometric phase: radius dependence of time-reversal Aharonov-Casher oscillations. Phys. Rev. Lett. 108, 086801 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K., Nitta, J.: Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4, 2526–2533 (2013)CrossRefADSGoogle Scholar
  16. 16.
    Richter, K.: Viewpoint: The ABC of Aharonov effects. Physics 5, 22 (2012). http://physics.aps.org/articles/v5/22
  17. 17.
    Sjöqvist, E.: Geometric phase for entangled spin pairs. Phys. Rev. A 62, 022109 (2000)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Amniat-Talab, M., Rangani Jahromi, H.: Relation between Berry phases and entanglement besides convergence of levels for two entangled spin-1/2 particles in magnetic fields. Eur. Phys. J. D 66(8), 1–11 (2012)Google Scholar
  19. 19.
    Amniat-Talab, M., Rangani Jahromi, H.: Design of geometric phase gates and controlling the dynamic phase for a two-qubit Ising model in magnetic fields. Proc. R. Soc. A 469, 20120743 (2013)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetCrossRefADSMATHGoogle Scholar
  21. 21.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  22. 22.
    Nakahara, M., Ohmi, T.: Quantum Computing. Taylor and Francis Group, London (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Tong, D.M., Kwek, L.C., Oh, C.H.: Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field. J. Phys. A 36, 1149–1157 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  24. 24.
    Ge, X.-Y., Wadati, M.: Geometric phase of entangled spin pairs in a magnetic field. Phys. Rev. A 72, 052101 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Li, Xin: Interacting spin pairs in rotational magnetic fields and geometric phase. Phys. Lett. A 372, 4980–4984 (2008)CrossRefADSMATHGoogle Scholar
  26. 26.
    Niu, C.W., Xu, G.F.L., Liu, L., Kang, L., Tong, D.M.: Separable states and geometric phases of an interacting two-spin system. Phys. Rev. A 81, 012116 (2010)CrossRefADSGoogle Scholar
  27. 27.
    Altintas, F., Eryigit, R.: Control and manipulation of entanglement between two coupled qubits by fast pulses. Quantum Inf. Process 12, 2251–2268 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  28. 28.
    Jaksch, D., et al.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)CrossRefADSGoogle Scholar
  29. 29.
    Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)CrossRefADSMATHGoogle Scholar
  30. 30.
    Laflamme R. et al.: Introduction to NMR quantum information processing. http://arxiv.org/abs/quant-ph/0207172
  31. 31.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  32. 32.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Shim, Y.P., Oh, S., Hu, X., Friesen, M.: Controllable anisotropic exchange coupling between spin qubits in quantum dots. Phys. Rev. Lett. 106, 180503 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)MathSciNetMATHGoogle Scholar
  35. 35.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSMATHGoogle Scholar
  36. 36.
    Nakahara, M., Rahimi, R., SaiToh, A.: Mathematical Aspects of Quantum Computing. World Scientific, Singapore (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesUrmia UniversityUrmiaIran

Personalised recommendations