Advertisement

Quantum Information Processing

, Volume 15, Issue 3, pp 1025–1042 | Cite as

On the connection between quantum nonlocality and phase sensitivity of two-mode entangled Fock state superpositions

  • Kaushik P. Seshadreesan
  • Christoph F. Wildfeuer
  • Moochan B. Kim
  • Hwang Lee
  • Jonathan P. Dowling
Article

Abstract

In two-mode interferometry, for a given total photon number N, entangled Fock state superpositions of the form \((|N-m\rangle _a|m\rangle _b+\mathrm{e}^{i (N-2m)\phi }|m\rangle _a|N-m\rangle _b)/\sqrt{2}\) have been considered for phase estimation. Indeed all such states are maximally mode-entangled and violate a Clauser–Horne–Shimony–Holt (CHSH) inequality. However, they differ in their optimal phase estimation capabilities as given by their quantum Fisher informations. The quantum Fisher information is the largest for the N00N state \((|N\rangle _a|0\rangle _b+\mathrm{e}^{i N\phi }|0\rangle _a|N\rangle _b)/\sqrt{2}\) and decreases for the other states with decreasing photon number difference between the two modes. We ask the question whether for any particular Clauser–Horne (CH) (or CHSH) inequality, the maximal values of the CH (or the CHSH) functional for the states of the above type follow the same trend as their quantum Fisher informations, while also violating the classical bound whenever the states are capable of sub-shot-noise phase estimation, so that the violation can be used to quantify sub-shot-noise sensitivity. We explore CH and CHSH inequalities in a homodyne setup. Our results show that the amount of violation in those nonlocality tests may not be used to quantify sub-shot-noise sensitivity of the above states.

Keywords

Quantum information Quantum entanglement Bell tests 

Notes

Acknowledgments

J. P. D. and K. P. S. would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, and the National Science Foundation. C. F. W. would like to add the following acknowledgment: I first met Howard at QCMC 2002 in Boston. He told me that as part of his formal education he went to the south of Germany and attended High School for a couple of years. He enjoyed chatting in German with me. Howard also introduced me to Jonathan P. Dowling at this conference who later hired me as a post doc. I met Howard several times at various international conferences over the past years. He always gave me advice on career moves and research topics, even in the weeks before his surgery. His encouragement and generosity made a deep impression on me, and I will never forget this extraordinary researcher and warm welcoming personality.

References

  1. 1.
    Pan, J.-W., Chen, Z.-B., Chao-Yang, L., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Pezzé, L., Smerzi, A.: Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100(7), 073601 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Birrittella, R., Mimih, J., Gerry, C.C.: Multiphoton quantum interference at a beam splitter and the approach to Heisenberg-limited interferometry. Phys. Rev. A 86, 063828 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  9. 9.
    Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71(9), 1355–1358 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Ono, T., Hofmann, H.F.: Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81(3), 033819 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Seshadreesan, K.P., Anisimov, P.M., Lee, H., Dowling, J.P.: Parity detection achieves the heisenberg limit in interferometry with coherent mixed with squeezed vacuum light. New J. Phys. 13(8), 083026 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Uys, H., Meystre, P.: Quantum states for Heisenberg-limited interferometry. Phys. Rev. A 76, 013804 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Huver, S.D., Wildfeuer, C.F., Dowling, J.P.: Entangled fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Hyllus, P., Gühne, O., Smerzi, A.: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82, 012337 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Jiang, K., Brignac, C.J., Weng, Y., Kim, M.B., Lee, H., Dowling, J.P.: Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss. Phys. Rev. A 86, 013826 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Bhaskar, R.B., Jiang, K., Dowling, J.P.: Effectsof phase fluctuations on phase sensitivity and visibility of path-entangled photon fock states. Phys. Rev. A 88, 023857 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)Google Scholar
  20. 20.
    Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Yu, S., Chen, Q., Zhang, C., Lai, C.H., Oh, C.H.: All entangled pure states violate a single bell’s inequality. Phys. Rev. Lett. 109, 120402 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Gilchrist, A., Deuar, P., Reid, M.D.: Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements. Phys. Rev. Lett. 80, 3169–3172 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Munro, W.J.: Optimal states for bell-inequality violations using quadrature-phase homodyne measurements. Phys. Rev. A 59, 4197–4201 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    Banaszek, K., Wódkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 2009–2013 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wildfeuer, C.F., Lund, A.P., Dowling, J.P.: Strong violations of bell-type inequalities for path-entangled number states. Phys. Rev. A 76, 052101 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of bell-type inequalities. Phys. Rev. A 80, 022111 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  33. 33.
    Cirel’son, B.S.: Quantum generalizations of bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Gisin, N., Peres, A.: Maximal violation of bell’s inequality for arbitrarily large spin. Phys. Lett. A 162(1), 15–17 (1992)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439–3443 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gerry, C.C., Mimih, J.: The parity operator in quantum optical metrology. Contemp. Phys. 51(6), 497–511 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Arfken, G., Weber, H.: Mathematical Methods for Physicists, Chap. 13, 3rd edn. Academic Press, London (1985)Google Scholar
  39. 39.
    de Oliveira, F.A.M., Kim, M.S., Knight, P.L., Buzek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645–2652 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    Wunsche, A.: Displaced fock states and their connection to quasiprobabilities. Quantum Opt. 3, 359–383 (1991)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kaushik P. Seshadreesan
    • 1
  • Christoph F. Wildfeuer
    • 2
  • Moochan B. Kim
    • 3
  • Hwang Lee
    • 1
  • Jonathan P. Dowling
    • 1
  1. 1.Department of Physics and Astronomy, Hearne Institute for Theoretical PhysicsLouisiana State UniversityBaton RougeUSA
  2. 2.Institute of Mathematics and Natural SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandWindischSwitzerland
  3. 3.Institute for Quantum Science and Engineering and Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations