Quantum Information Processing

, Volume 14, Issue 10, pp 3913–3931 | Cite as

Three-particle Bell-like inequalities under Lorentz transformations

  • H. MoradpourEmail author
  • S. Maghool
  • S. A. Moosavi


We study the effects of Lorentz transformations on three-particle nonlocal system states (GHZ and W) of spin 1/2 particles, using the Pauli spin operator and a three-particle generalization of Bell’s inequality, introduced by Svetlichny. In our setup, the moving and laboratory frames used the (same) set of measurement directions that maximally violate Svetlichny’s inequality in the laboratory frame. We also investigate the behavior of Mermin’s and Collins’ inequalities. We find that, regardless of the particles’ type of entanglement, violation of Svetlichny’s inequality in the moving frame is decreased by increasing the boost velocity and the energy of particles in the laboratory frame. In the relativistic regime, Svetlichny’s inequality is a good criterion to investigate the nonlocality of the GHZ state. We also find that Mermin’s and Collins’ inequalities lead to reasonable predictions, in agreement with the behavior of the spin state, about nonlocality of the W state in the relativistic regime. Then, comparing our results with those in which Czachor’s relativistic spin is used instead of the Pauli operator, we find that the results obtained by considering the Pauli spin operator are in better agreement with the behavior of spin state of the system in the relativistic information theory.


Multipartite nonlocality Lorentz transformation Spin operator 



We are grateful to the anonymous reviewers for their worthy hints and constructive comments which help us increase our understanding of the subject. This work has been supported financially by Research Institute for Astronomy and Astrophysics of Maragha (RIAAM) under research No. 1/3720-76.


  1. 1.
    Einstein, E., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSzbMATHGoogle Scholar
  2. 2.
    Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsk. Phys. Rev. 108, 1070–1076 (1957)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics (N.Y). 1, 195 (1964)Google Scholar
  4. 4.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)CrossRefADSGoogle Scholar
  5. 5.
    Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005–1009 (1970)CrossRefADSGoogle Scholar
  6. 6.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)CrossRefADSGoogle Scholar
  7. 7.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)CrossRefADSGoogle Scholar
  9. 9.
    Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)CrossRefADSGoogle Scholar
  10. 10.
    Aspect, A., Grangier, P., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Dunningham, J.A., Vedral, V.: Nonlocality of a single particle. Phys. Rev. Lett. 99, 180404 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  12. 12.
    Cooper, J.J., Dunningham, J.A.: Single particle nonlocality with completely independent reference states. New J. Phys. 10, 113024 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Gisin, N., Peres, A.: Maximal violation of Bells inequality for arbitrarily large spin. Phys. Lett. A 162, 15–17 (1992)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)CrossRefADSGoogle Scholar
  17. 17.
    Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. 18.
    Eberhard, P.: Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, 747(R) (1993)CrossRefADSGoogle Scholar
  19. 19.
    Acin, A., Durt, T., Gisin, N., Latorre, J.I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Acin, A., Gill, R., Gisin, N.: Optimal Bell tests do not require maximally entangled states. Phys. Rev. Lett. 95, 210402 (2005)CrossRefADSGoogle Scholar
  21. 21.
    Zohren, S., Gill, R.D.: Maximal violation of the Collins–Gisin–Linden–Massar–Popescu inequality for infinite dimensional states. Phys. Rev. Lett. 100, 120406 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695–746 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev. A 83, 052310 (2011)CrossRefADSGoogle Scholar
  24. 24.
    Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 2 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bertlmann, R.A.: John Bell and the nature of the quantum world. J. Phys. A Math. Theor. 47, 424007 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. 26.
    Audretch, J.: Entangled Systems. Willy-VCH, Berlin (2007)CrossRefGoogle Scholar
  27. 27.
    Nielsen, N.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  28. 28.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)zbMATHGoogle Scholar
  29. 29.
    Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Dunningham, J., Palge, V., Vedral, V.: Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 80, 044302 (2009)CrossRefADSGoogle Scholar
  31. 31.
    Cezachor, M.: Comment on quantum entropy and special relativity. Phys. Rev. Lett. 94, 078901 (2005)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Peres, A., Scudo, P.F., Terno, D.R.: Peres, Scudo, and Terno Reply. Phys. Rev. Lett. 94, 078902 (2005)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Czachor, M., Wilczewski, M.: Relativistic Bennett–Brassard cryptographic scheme, relativistic errors, and how to correct them. Phys. Rev. A 68, 010302(R) (2003)CrossRefADSGoogle Scholar
  34. 34.
    Czachor, M.: Relativistic corrections to the Ekert test for eavesdropping. Proc. SPIE 3076, 141–145 (1997). arXiv:quant-ph/0205187v1
  35. 35.
    Weinberg, S.: The Quantum Theory of Fields. Volume I: Foundations. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  36. 36.
    Fuentes, I., Mann, R.B., Martin-Martinez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86, 012306 (2012)CrossRefADSGoogle Scholar
  38. 38.
    Friis, N., Köhler, P., Martin-Martinez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)CrossRefADSGoogle Scholar
  39. 39.
    Moradi, S.: Bell’s inequality with Dirac particles. JETP Lett. 89, 1 (2009)CrossRefGoogle Scholar
  40. 40.
    Moradi, S., Pierini, R., Mancini, S.: Spin-particles entanglement in Robertson–Walker spacetime. Phys. Rev. D 89, 024022 (2014)CrossRefADSGoogle Scholar
  41. 41.
    Halpern, F.R.: Special Relativity and Quantum Mechanics. Prentice-Hall, Englewood Cliffs (1968)zbMATHGoogle Scholar
  42. 42.
    Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)MathSciNetCrossRefADSzbMATHGoogle Scholar
  43. 43.
    Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)CrossRefGoogle Scholar
  44. 44.
    Li, H., Du, J.: Relativistic invariant quantum entanglement between the spins of moving bodies. Phys. Rev. A 68, 022108 (2003)CrossRefADSGoogle Scholar
  45. 45.
    Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Lorentz transformations that entangle spins and entangle momenta. Phys. Rev. A 75, 022101 (2007)MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    Alsing, P.M., Milburn, G.J.: On entanglement and Lorentz transformations. Quant. Inf. Comput. 2, 487–512 (2002)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Terashima, H., Ueda, M.: Einstein–Podolsky–Rosen correlation seen from moving observers. Quantum Inf. Comput. 3, 224–228 (2003)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Terashima, H., Ueda, M.: Relativistic Einstein–Podolsky–Rosen correlation and Bell’s inequality. Int. J. Quantum Inf. 1, 93–114 (2003)CrossRefzbMATHGoogle Scholar
  49. 49.
    Ahn, D., Lee, H.-J., Moon, Y.H., Hwang, S.W.: Relativistic entanglement and Bells inequality. Phys. Rev. A 67, 012103 (2003)MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Lee, D., Chang-Young, E.: Quantum entanglement under Lorentz boost. New J. Phys. 6, 67 (2004)CrossRefADSGoogle Scholar
  51. 51.
    Kim, W.T., Son, E.J.: Lorentz-invariant Bells inequality. Phys. Rev. A 71, 014102 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  52. 52.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)CrossRefADSGoogle Scholar
  54. 54.
    Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305 (2009)CrossRefADSGoogle Scholar
  55. 55.
    Leon, J., Martin-Martinez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)CrossRefADSGoogle Scholar
  56. 56.
    Terashima, H., Ueda, M.: Einstein–Podolsky–Rosen correlation in a gravitational field. Phys. Rev. A 69, 032113 (2004)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Shi, Y.: Entanglement in relativistic quantum field theory. Phys. Rev. D 70, 105001 (2004)MathSciNetCrossRefADSGoogle Scholar
  58. 58.
    Ball, J.L., Schuller, I.F., Schuller, F.P.: Entanglement in an expanding spacetime. Phys. Lett. A 359, 550 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  59. 59.
    Ver Steeg, G., Menicucci, N.C.: Entangling power of an expanding universe. Phys. Rev. D 79, 044027 (2009)CrossRefADSGoogle Scholar
  60. 60.
    Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72 (1997)CrossRefADSGoogle Scholar
  61. 61.
    Bauke, H., Ahrens, S., Keitel, C.H., Grobe, R.: Relativistic spin operators in various electromagnetic environments. Phys. Rev. A 89, 052101 (2014)CrossRefADSGoogle Scholar
  62. 62.
    Bauke, H., Ahrens, S., Keitel, C.H., Grobe, R.: What is the relativistic spin operator? New. J. Phys. 16, 043012 (2014)CrossRefADSGoogle Scholar
  63. 63.
    Terno, D.R.: Two roles of relativistic spin operators. Phys. Rev. A 67, 014102 (2003)MathSciNetCrossRefADSGoogle Scholar
  64. 64.
    Moradi, S.: Relativistic quantum nonlocality for the three-qubit Greenberger–Horne–Zeilinger state. Phys. Rev. A 77, 024101 (2008)MathSciNetCrossRefADSGoogle Scholar
  65. 65.
    Moradpour, H., Montakhab, A.: Relativistic three-partite non-locality. Phys. Rev. A (unpublished manuscript)Google Scholar
  66. 66.
    Moradi, S., Aghaee, M.: Frame independent nonlocality for three qubit state. Int. J. Theor. Phys. 49, 615 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)CrossRefADSGoogle Scholar
  68. 68.
    Ghose, S., Debnath, S., Sinclair, N., Kabra, A., Stock, R.: Multiqubit nonlocality in families of 3- and 4-qubit entangled states. J. Phys. A 43, 445301 (2010)MathSciNetCrossRefADSzbMATHGoogle Scholar
  69. 69.
    Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)MathSciNetCrossRefADSGoogle Scholar
  70. 70.
    Mitchell, P., Popescu, S., Roberts, D.: Conditions for the confirmation of three-particle nonlocality. Phys. Rev. A 70, 060101(R) (2004)MathSciNetCrossRefADSGoogle Scholar
  71. 71.
    Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)MathSciNetCrossRefADSGoogle Scholar
  72. 72.
    Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)MathSciNetCrossRefADSGoogle Scholar
  73. 73.
    Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  74. 74.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  75. 75.
    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)MathSciNetCrossRefADSzbMATHGoogle Scholar
  76. 76.
    Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)CrossRefADSGoogle Scholar
  77. 77.
    Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)MathSciNetCrossRefADSzbMATHGoogle Scholar
  78. 78.
    Roy, S.M.: Multipartite separability inequalities exponentially stronger than local reality inequalities. Phys. Rev. Lett. 94, 010402 (2005)CrossRefADSGoogle Scholar
  79. 79.
    Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)MathSciNetCrossRefADSGoogle Scholar
  80. 80.
    Bancal, J.-D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013)CrossRefADSGoogle Scholar
  81. 81.
    Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Operational framework for nonlocality. Phys. Rev. Lett. 109, 070401 (2012)CrossRefADSGoogle Scholar
  82. 82.
    Almeida, M., Cavalcanti, D., Scarani, V., Acín, A.: Multipartite fully nonlocal quantum states. Phys. Rev. A 81, 052111 (2010)CrossRefADSGoogle Scholar
  83. 83.
    You, H., Wang, A.M., Yang, X., Niu, W., Ma, X., Xu, F.: Greenberger–Horne–Zeilinger correlation and Bell-type inequality seen from a moving frame. Phys. Lett. A 333, 389 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  84. 84.
    Hwang, M., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)CrossRefADSGoogle Scholar
  85. 85.
    Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)CrossRefADSGoogle Scholar
  86. 86.
    Moradpour, H., Bahadoran, M.: One and two spin\(-1/2\) particles systems under Lorentz transformations. arXiv:1506.07106

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations