Skip to main content

Advertisement

Log in

Three-particle Bell-like inequalities under Lorentz transformations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the effects of Lorentz transformations on three-particle nonlocal system states (GHZ and W) of spin 1/2 particles, using the Pauli spin operator and a three-particle generalization of Bell’s inequality, introduced by Svetlichny. In our setup, the moving and laboratory frames used the (same) set of measurement directions that maximally violate Svetlichny’s inequality in the laboratory frame. We also investigate the behavior of Mermin’s and Collins’ inequalities. We find that, regardless of the particles’ type of entanglement, violation of Svetlichny’s inequality in the moving frame is decreased by increasing the boost velocity and the energy of particles in the laboratory frame. In the relativistic regime, Svetlichny’s inequality is a good criterion to investigate the nonlocality of the GHZ state. We also find that Mermin’s and Collins’ inequalities lead to reasonable predictions, in agreement with the behavior of the spin state, about nonlocality of the W state in the relativistic regime. Then, comparing our results with those in which Czachor’s relativistic spin is used instead of the Pauli operator, we find that the results obtained by considering the Pauli spin operator are in better agreement with the behavior of spin state of the system in the relativistic information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, E., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsk. Phys. Rev. 108, 1070–1076 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics (N.Y). 1, 195 (1964)

    Google Scholar 

  4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  5. Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005–1009 (1970)

    Article  ADS  Google Scholar 

  6. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  7. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  8. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  9. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  10. Aspect, A., Grangier, P., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. Dunningham, J.A., Vedral, V.: Nonlocality of a single particle. Phys. Rev. Lett. 99, 180404 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cooper, J.J., Dunningham, J.A.: Single particle nonlocality with completely independent reference states. New J. Phys. 10, 113024 (2008)

    Article  ADS  Google Scholar 

  13. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. Gisin, N., Peres, A.: Maximal violation of Bells inequality for arbitrarily large spin. Phys. Lett. A 162, 15–17 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  16. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  17. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Eberhard, P.: Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, 747(R) (1993)

    Article  ADS  Google Scholar 

  19. Acin, A., Durt, T., Gisin, N., Latorre, J.I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002)

    Article  ADS  Google Scholar 

  20. Acin, A., Gill, R., Gisin, N.: Optimal Bell tests do not require maximally entangled states. Phys. Rev. Lett. 95, 210402 (2005)

    Article  ADS  Google Scholar 

  21. Zohren, S., Gill, R.D.: Maximal violation of the Collins–Gisin–Linden–Massar–Popescu inequality for infinite dimensional states. Phys. Rev. Lett. 100, 120406 (2008)

    Article  ADS  Google Scholar 

  22. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695–746 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev. A 83, 052310 (2011)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 2 (1999)

    Article  MathSciNet  Google Scholar 

  25. Bertlmann, R.A.: John Bell and the nature of the quantum world. J. Phys. A Math. Theor. 47, 424007 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Audretch, J.: Entangled Systems. Willy-VCH, Berlin (2007)

    Book  Google Scholar 

  27. Nielsen, N.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  29. Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  30. Dunningham, J., Palge, V., Vedral, V.: Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 80, 044302 (2009)

    Article  ADS  Google Scholar 

  31. Cezachor, M.: Comment on quantum entropy and special relativity. Phys. Rev. Lett. 94, 078901 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Peres, A., Scudo, P.F., Terno, D.R.: Peres, Scudo, and Terno Reply. Phys. Rev. Lett. 94, 078902 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. Czachor, M., Wilczewski, M.: Relativistic Bennett–Brassard cryptographic scheme, relativistic errors, and how to correct them. Phys. Rev. A 68, 010302(R) (2003)

    Article  ADS  Google Scholar 

  34. Czachor, M.: Relativistic corrections to the Ekert test for eavesdropping. Proc. SPIE 3076, 141–145 (1997). arXiv:quant-ph/0205187v1

  35. Weinberg, S.: The Quantum Theory of Fields. Volume I: Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  36. Fuentes, I., Mann, R.B., Martin-Martinez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)

    Article  ADS  Google Scholar 

  37. Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86, 012306 (2012)

    Article  ADS  Google Scholar 

  38. Friis, N., Köhler, P., Martin-Martinez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  39. Moradi, S.: Bell’s inequality with Dirac particles. JETP Lett. 89, 1 (2009)

    Article  Google Scholar 

  40. Moradi, S., Pierini, R., Mancini, S.: Spin-particles entanglement in Robertson–Walker spacetime. Phys. Rev. D 89, 024022 (2014)

    Article  ADS  Google Scholar 

  41. Halpern, F.R.: Special Relativity and Quantum Mechanics. Prentice-Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  42. Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  44. Li, H., Du, J.: Relativistic invariant quantum entanglement between the spins of moving bodies. Phys. Rev. A 68, 022108 (2003)

    Article  ADS  Google Scholar 

  45. Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Lorentz transformations that entangle spins and entangle momenta. Phys. Rev. A 75, 022101 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  46. Alsing, P.M., Milburn, G.J.: On entanglement and Lorentz transformations. Quant. Inf. Comput. 2, 487–512 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Terashima, H., Ueda, M.: Einstein–Podolsky–Rosen correlation seen from moving observers. Quantum Inf. Comput. 3, 224–228 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Terashima, H., Ueda, M.: Relativistic Einstein–Podolsky–Rosen correlation and Bell’s inequality. Int. J. Quantum Inf. 1, 93–114 (2003)

    Article  MATH  Google Scholar 

  49. Ahn, D., Lee, H.-J., Moon, Y.H., Hwang, S.W.: Relativistic entanglement and Bells inequality. Phys. Rev. A 67, 012103 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  50. Lee, D., Chang-Young, E.: Quantum entanglement under Lorentz boost. New J. Phys. 6, 67 (2004)

    Article  ADS  Google Scholar 

  51. Kim, W.T., Son, E.J.: Lorentz-invariant Bells inequality. Phys. Rev. A 71, 014102 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  53. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  54. Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305 (2009)

    Article  ADS  Google Scholar 

  55. Leon, J., Martin-Martinez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)

    Article  ADS  Google Scholar 

  56. Terashima, H., Ueda, M.: Einstein–Podolsky–Rosen correlation in a gravitational field. Phys. Rev. A 69, 032113 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  57. Shi, Y.: Entanglement in relativistic quantum field theory. Phys. Rev. D 70, 105001 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  58. Ball, J.L., Schuller, I.F., Schuller, F.P.: Entanglement in an expanding spacetime. Phys. Lett. A 359, 550 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Ver Steeg, G., Menicucci, N.C.: Entangling power of an expanding universe. Phys. Rev. D 79, 044027 (2009)

    Article  ADS  Google Scholar 

  60. Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72 (1997)

    Article  ADS  Google Scholar 

  61. Bauke, H., Ahrens, S., Keitel, C.H., Grobe, R.: Relativistic spin operators in various electromagnetic environments. Phys. Rev. A 89, 052101 (2014)

    Article  ADS  Google Scholar 

  62. Bauke, H., Ahrens, S., Keitel, C.H., Grobe, R.: What is the relativistic spin operator? New. J. Phys. 16, 043012 (2014)

    Article  ADS  Google Scholar 

  63. Terno, D.R.: Two roles of relativistic spin operators. Phys. Rev. A 67, 014102 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  64. Moradi, S.: Relativistic quantum nonlocality for the three-qubit Greenberger–Horne–Zeilinger state. Phys. Rev. A 77, 024101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  65. Moradpour, H., Montakhab, A.: Relativistic three-partite non-locality. Phys. Rev. A (unpublished manuscript)

  66. Moradi, S., Aghaee, M.: Frame independent nonlocality for three qubit state. Int. J. Theor. Phys. 49, 615 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)

    Article  ADS  Google Scholar 

  68. Ghose, S., Debnath, S., Sinclair, N., Kabra, A., Stock, R.: Multiqubit nonlocality in families of 3- and 4-qubit entangled states. J. Phys. A 43, 445301 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  70. Mitchell, P., Popescu, S., Roberts, D.: Conditions for the confirmation of three-particle nonlocality. Phys. Rev. A 70, 060101(R) (2004)

    Article  MathSciNet  ADS  Google Scholar 

  71. Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  72. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  73. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  75. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  ADS  Google Scholar 

  77. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Roy, S.M.: Multipartite separability inequalities exponentially stronger than local reality inequalities. Phys. Rev. Lett. 94, 010402 (2005)

    Article  ADS  Google Scholar 

  79. Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  80. Bancal, J.-D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013)

    Article  ADS  Google Scholar 

  81. Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Operational framework for nonlocality. Phys. Rev. Lett. 109, 070401 (2012)

    Article  ADS  Google Scholar 

  82. Almeida, M., Cavalcanti, D., Scarani, V., Acín, A.: Multipartite fully nonlocal quantum states. Phys. Rev. A 81, 052111 (2010)

    Article  ADS  Google Scholar 

  83. You, H., Wang, A.M., Yang, X., Niu, W., Ma, X., Xu, F.: Greenberger–Horne–Zeilinger correlation and Bell-type inequality seen from a moving frame. Phys. Lett. A 333, 389 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Hwang, M., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  85. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  86. Moradpour, H., Bahadoran, M.: One and two spin\(-1/2\) particles systems under Lorentz transformations. arXiv:1506.07106

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their worthy hints and constructive comments which help us increase our understanding of the subject. This work has been supported financially by Research Institute for Astronomy and Astrophysics of Maragha (RIAAM) under research No. 1/3720-76.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moradpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradpour, H., Maghool, S. & Moosavi, S.A. Three-particle Bell-like inequalities under Lorentz transformations. Quantum Inf Process 14, 3913–3931 (2015). https://doi.org/10.1007/s11128-015-1064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1064-3

Keywords

Navigation