Quantum Information Processing

, Volume 14, Issue 6, pp 1841–1854 | Cite as

Syndrome measurement strategies for the [[7,1,3]] code



Quantum error correction (QEC) entails the encoding of quantum information into a QEC code space, measuring error syndromes to properly locate and identify errors, and, if necessary, applying a proper recovery operation. Here we compare three syndrome measurement protocols for the [[7,1,3]] QEC code: Shor states, Steane states, and one ancilla qubit by simulating the implementation of 50 logical gates with the syndrome measurements interspersed between the gates at different intervals. We then compare the fidelities for the different syndrome measurement types. Our simulations show that the optimal syndrome measurement strategy is generally not to apply syndrome measurements after every gate but depends on the details of the error environment. Our simulations also allow a quantum computer programmer to weigh computational accuracy versus resource consumption (time and number of qubits) for a particular error environment. In addition, we show that applying syndrome measurements that are unnecessary from the standpoint of quantum fault tolerance may be helpful in achieving better accuracy or in lowering resource consumption. Finally, our simulations demonstrate that the single-qubit non-fault-tolerant syndrome measurement strategy achieves comparable fidelity to those that are fault tolerant.


Quantum error correction Quantum fault tolerance  Syndrome measurements 



I would like to thank G. Gilbert for insightful comments. This research is supported under MITRE Innovation Program Grant 51MSR662.


  1. 1.
    Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)ADSGoogle Scholar
  3. 3.
    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)ADSGoogle Scholar
  4. 4.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)ADSMATHMathSciNetGoogle Scholar
  5. 5.
    Steane, A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 452, 2551–2577 (1996)ADSMATHMathSciNetGoogle Scholar
  6. 6.
    Preskill, J.: Reliable quantum computers. Proc. Roy. Soc. Lond. A 454, 385–410 (1998)ADSMATHMathSciNetGoogle Scholar
  7. 7.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos (1996)Google Scholar
  8. 8.
    Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)ADSGoogle Scholar
  9. 9.
    Aleferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 code. Quant. Inf. Comput. 6, 97–165 (2006)Google Scholar
  10. 10.
    Weinstein, Y.S.: Quantum-error-correction implementation after multiple gates. Phys. Rev. A 88, 012325 (2013)ADSGoogle Scholar
  11. 11.
    Weinstein, Y.S.: Quantum error correction during 50 gates. Phys. Rev. A 89, 020301(R) (2014)ADSGoogle Scholar
  12. 12.
    Whitney, M.G., Isailovic, N., Patel, Y., Kubiatowicz, J.: A fault tolerant, area efficient architecture for Shor’s factoring algorithm. Proceedings of the 36th Annual International Symposium on Computer Architecture, (ACM, New York, 2009)Google Scholar
  13. 13.
    Weinstein, Y.S., Buchbinder, S.D.: Use of Shor states for the [7,1,3] quantum error-correcting code. Phys. Rev. A 86, 052336 (2012)ADSGoogle Scholar
  14. 14.
    Weinstein, Y.S.: Fidelity of an encoded [7,1,3] logical zero. Phys. Rev. A 84, 012323 (2011)ADSGoogle Scholar
  15. 15.
    Buchbinder, S.D., Huang, C.L., Weinstein, Y.S.: Encoding an arbitrary state in a [7,1,3] quantum error correction code. Quant. Inf. Proc. 12, 699–719 (2013)MATHMathSciNetGoogle Scholar
  16. 16.
    Weinstein, Y.S.: Non-fault-tolerant T gates for the [7,1,3] quantum error-correction code. Phys. Rev. A 87, 032320 (2013)ADSGoogle Scholar
  17. 17.
    Nada, A.A., Fortescue, B., Byrd, M.: Relative performance of ancilla verification and decoding in the [[7,1,3]] Steane code. Phys. Rev. A 89, 062304 (2014)ADSGoogle Scholar
  18. 18.
    Tomita, Y., et al.: Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)ADSGoogle Scholar
  19. 19.
    Kitaev, A.Y.: Russ. Math. Surv. 52, 1191 (1997); Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation Graduate Studies in Mathematics 47, American Mathematical Society 2002Google Scholar
  20. 20.
    Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quant. Inf. Comp. 6, 81–95 (2006)MATHMathSciNetGoogle Scholar
  21. 21.
    Bocharov, A., Svore, K.M.: Resource-Optimal Single-Qubit Quantum Circuits. Phys. Rev. Lett. 109, 190501 (2012)ADSGoogle Scholar
  22. 22.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quant. Inf. Comp. 13, 607–630 (2013)MathSciNetGoogle Scholar
  23. 23.
    Pham, T.T., Van Meter, R., Horsman, C.: Optimization of the Solovay-Kitaev algorithm. Phys. Rev. A 87, 052332 (2013)ADSGoogle Scholar
  24. 24.
    Duclos-Ciani, G., Svore, K.M.: A State Distillation Protocol to Implement Arbitrary Single-qubit Rotations. Phys. Rev. A 88, 042325 (2013)ADSGoogle Scholar
  25. 25.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)ADSGoogle Scholar
  26. 26.
    Selinger, P.: Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253
  27. 27.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. arXiv:1212.6964
  28. 28.
    Aggarwal, V., Calderbank, A.R., Gilbert, G., Weinstein, Y.S.: Volume thresholds for quantum fault tolerance. Quant. Inf. Proc. 9, 541 (2010)MATHMathSciNetGoogle Scholar
  29. 29.
    Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008)ADSGoogle Scholar
  30. 30.
    Svore, K.M., Terhal, B.M., DiVincenzo, D.P.: Local fault-tolerant quantum computation. Phys. Rev. A 72, 022317 (2005)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Quantum Information Science GroupMITREPrincetonUSA

Personalised recommendations