Skip to main content
Log in

Syndrome measurement strategies for the [[7,1,3]] code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum error correction (QEC) entails the encoding of quantum information into a QEC code space, measuring error syndromes to properly locate and identify errors, and, if necessary, applying a proper recovery operation. Here we compare three syndrome measurement protocols for the [[7,1,3]] QEC code: Shor states, Steane states, and one ancilla qubit by simulating the implementation of 50 logical gates with the syndrome measurements interspersed between the gates at different intervals. We then compare the fidelities for the different syndrome measurement types. Our simulations show that the optimal syndrome measurement strategy is generally not to apply syndrome measurements after every gate but depends on the details of the error environment. Our simulations also allow a quantum computer programmer to weigh computational accuracy versus resource consumption (time and number of qubits) for a particular error environment. In addition, we show that applying syndrome measurements that are unnecessary from the standpoint of quantum fault tolerance may be helpful in achieving better accuracy or in lowering resource consumption. Finally, our simulations demonstrate that the single-qubit non-fault-tolerant syndrome measurement strategy achieves comparable fidelity to those that are fault tolerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    ADS  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    ADS  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  5. Steane, A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 452, 2551–2577 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Preskill, J.: Reliable quantum computers. Proc. Roy. Soc. Lond. A 454, 385–410 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos (1996)

  8. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    ADS  Google Scholar 

  9. Aleferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 code. Quant. Inf. Comput. 6, 97–165 (2006)

    Google Scholar 

  10. Weinstein, Y.S.: Quantum-error-correction implementation after multiple gates. Phys. Rev. A 88, 012325 (2013)

    ADS  Google Scholar 

  11. Weinstein, Y.S.: Quantum error correction during 50 gates. Phys. Rev. A 89, 020301(R) (2014)

    ADS  Google Scholar 

  12. Whitney, M.G., Isailovic, N., Patel, Y., Kubiatowicz, J.: A fault tolerant, area efficient architecture for Shor’s factoring algorithm. Proceedings of the 36th Annual International Symposium on Computer Architecture, (ACM, New York, 2009)

  13. Weinstein, Y.S., Buchbinder, S.D.: Use of Shor states for the [7,1,3] quantum error-correcting code. Phys. Rev. A 86, 052336 (2012)

    ADS  Google Scholar 

  14. Weinstein, Y.S.: Fidelity of an encoded [7,1,3] logical zero. Phys. Rev. A 84, 012323 (2011)

    ADS  Google Scholar 

  15. Buchbinder, S.D., Huang, C.L., Weinstein, Y.S.: Encoding an arbitrary state in a [7,1,3] quantum error correction code. Quant. Inf. Proc. 12, 699–719 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Weinstein, Y.S.: Non-fault-tolerant T gates for the [7,1,3] quantum error-correction code. Phys. Rev. A 87, 032320 (2013)

    ADS  Google Scholar 

  17. Nada, A.A., Fortescue, B., Byrd, M.: Relative performance of ancilla verification and decoding in the [[7,1,3]] Steane code. Phys. Rev. A 89, 062304 (2014)

    ADS  Google Scholar 

  18. Tomita, Y., et al.: Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)

    ADS  Google Scholar 

  19. Kitaev, A.Y.: Russ. Math. Surv. 52, 1191 (1997); Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation Graduate Studies in Mathematics 47, American Mathematical Society 2002

  20. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quant. Inf. Comp. 6, 81–95 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Bocharov, A., Svore, K.M.: Resource-Optimal Single-Qubit Quantum Circuits. Phys. Rev. Lett. 109, 190501 (2012)

    ADS  Google Scholar 

  22. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quant. Inf. Comp. 13, 607–630 (2013)

    MathSciNet  Google Scholar 

  23. Pham, T.T., Van Meter, R., Horsman, C.: Optimization of the Solovay-Kitaev algorithm. Phys. Rev. A 87, 052332 (2013)

    ADS  Google Scholar 

  24. Duclos-Ciani, G., Svore, K.M.: A State Distillation Protocol to Implement Arbitrary Single-qubit Rotations. Phys. Rev. A 88, 042325 (2013)

    ADS  Google Scholar 

  25. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)

    ADS  Google Scholar 

  26. Selinger, P.: Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253

  27. Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. arXiv:1212.6964

  28. Aggarwal, V., Calderbank, A.R., Gilbert, G., Weinstein, Y.S.: Volume thresholds for quantum fault tolerance. Quant. Inf. Proc. 9, 541 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008)

    ADS  Google Scholar 

  30. Svore, K.M., Terhal, B.M., DiVincenzo, D.P.: Local fault-tolerant quantum computation. Phys. Rev. A 72, 022317 (2005)

    ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank G. Gilbert for insightful comments. This research is supported under MITRE Innovation Program Grant 51MSR662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov S. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, Y.S. Syndrome measurement strategies for the [[7,1,3]] code. Quantum Inf Process 14, 1841–1854 (2015). https://doi.org/10.1007/s11128-015-0988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0988-y

Keywords

Navigation