Quantum Information Processing

, Volume 14, Issue 6, pp 2055–2066 | Cite as

Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions

  • Meng Qin
  • Zhong-Zhou Ren


We investigate the characteristics of entanglement teleportation of a two-qubit and three-qubit Heisenberg XYZ model under different Dzyaloshinskii–Moriya (DM) interactions with intrinsic decoherence taken into account. The two-qubit results reveal that the dynamics of entanglement is a symmetric function about the coupling coefficient \(J\) for the \(z\)-component DM system, whereas it is not for the \(x\)-component DM system. The ferromagnetic case is superior to the antiferromagnetic case to restrain decoherence when using the \(x\)-component DM system. The dependencies of entanglement, the output entanglement, and the average fidelity on initial state angle \(\alpha \) all demonstrate periodicity. Moreover, the \(x\)-component DM system can get a high fidelity both in two-qubit and in three-qubit teleportation protocol.


Entanglement Decoherence Teleportation Different Dzyaloshinskii–Moriya interactions 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11035001, 11375086, 11105079, and 10975072), the National Major State Basic Research and Development of China (Grant Nos. 2013CB834400 and 2010CB327803), the Chinese Academy of Sciences Knowledge Innovation Project (Grant No. KJCX2-SW-N02), the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028), and the Science and Technology Development Fund of Macau (Grant No. 068/2011/A).


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)CrossRefADSMATHMathSciNetGoogle Scholar
  3. 3.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body system. Rev. Mod. Phys. 80, 517 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Souza, A.M., Reis, M.S., Soares-Pinto, D.O., Oliveira, I.S., Sarthour, R.S.: Experimental determination of thermal entanglement in spin clusters using magnetic susceptibility measurements. Phys. Rev. B 77, 104402 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Qin, M., Li, Y.B., Wu, F.P.: Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system. Quantum Inf. Process. 13, 1573–1582 (2014)CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    Amniat-Talab, M., Jahromi, H.R.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with DM interaction in magnetic field. Quantum Inf. Process. 12, 1185–1199 (2013)CrossRefADSMATHGoogle Scholar
  7. 7.
    Ma, X.S., Zhao, G.X., Zhang, J.Y., Wang, A.M.: Tripartite entanglement of a spin star model with Dzialoshinski–Moriya interaction. Quantum Inf. Process. 12, 321–329 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Li, D.C., Cao, Z.L.: Thermal entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii–Moriya couplings. Chin. Phys. Lett. 26, 020309 (2009)CrossRefADSGoogle Scholar
  9. 9.
    Majumdar, K.: Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice. J. Phys.: Condens. Matter 23, 046001 (2011)ADSGoogle Scholar
  10. 10.
    Hu, M.L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851–860 (2012)CrossRefADSMATHGoogle Scholar
  11. 11.
    Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11, 1911–1920 (2012)CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Xu, J.B., Zou, X.B., Yu, J.H.: Influence of intrinsic decoherence on nonclassical properties of the two-mode Raman coupled model. Eur. Phys. J. D 10, 295–300 (2000)CrossRefADSGoogle Scholar
  14. 14.
    Mohammadi, H., Akhtarshenas, S.J., Kheirandish, F.: Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D 62, 439–447 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711–721 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Yu, P.F., Cai, J.G., Liu, J.M., Shen, G.T.: Effects of phase decoherence on the entanglement of a two-qubit anisotropic Heisenberg XYZ chain with an in-plane magnetic field. Eur. Phys. J. D 44, 151–158 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Guo, J.L., Song, H.S.: Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scripta 78, 045002 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Fan, K.M., Zhang, G.F.: Geometric quantum discord and entanglement between two atoms in Tavis–Cummings model with dipole–dipole interaction under intrinsic decoherence. Eur. Phys. J. D 68, 163 (2014)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Shim, Yun-Pil, Oh, S., Hu, X.D., Friesen, M.: Controllable anisotropic exchange coupling between spin qubits in quantum dots. Phys. Rev. Lett. 106, 180503 (2011)CrossRefADSGoogle Scholar
  20. 20.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  21. 21.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)CrossRefADSGoogle Scholar
  22. 22.
    Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)CrossRefADSGoogle Scholar
  23. 23.
    Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  24. 24.
    Zhou, Y., Zhang, G.F.: Quantum teleportation via a two-qubit Heisenberg XXZ chain—effects of anisotropy and magnetic field. Eur. Phys. J. D 47, 227–231 (2008)CrossRefADSGoogle Scholar
  25. 25.
    Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Yeo, Y.: Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation. Phys. Rev. A 68, 022316 (2003)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and Key Laboratory of Modern AcousticNanjing UniversityNanjingChina
  2. 2.College of SciencesPLA University of Science and TechnologyNanjingChina
  3. 3.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy-Ion AcceleratorLanzhouChina
  4. 4.Kavli Institute for Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations