Quantum Information Processing

, Volume 14, Issue 6, pp 2271–2280 | Cite as

Probabilistic cloning of a single-atom state via cavity QED

  • Wen Zhang
  • Pinshu Rui
  • Yan Lu
  • Qun Yang
  • Yan Zhao


We propose a scheme for probabilistically cloning a two-level state of an atom to a polarization photon via cavity QED system combined with linear optics elements. By choosing appropriate parameters, a controlled phase flip (CPF) gate between the atom and the probe photon is realized. Then we can judge that the cloning process should be continued (with the optimal probability) or interrupted by detecting the probe photon. If the cloning can be continued, the original atom state is deterministically cloned to the cloning photon by performing two more CPF gates and three single-qubit unitary operations. Otherwise, if the detection shows that the cloning should be interrupted, the cloning photon and the relevant operations are omitted.


Probabilistic quantum cloning Single-atom state Cavity QED 



We are grateful to the editor and the anonymous reviewers for their helpful suggestions. This work is supported by the 211 Project of Anhui University, the Natural Science Foundation of Anhui University (KJQN1104), the National Science Foundation of China (11374013) and the Anhui Provincial Natural Science Foundation (1408085QF127).


  1. 1.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)CrossRefADSGoogle Scholar
  2. 2.
    Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSGoogle Scholar
  3. 3.
    Bǔzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)ADSMathSciNetGoogle Scholar
  4. 4.
    Galvão, E.F., Hardy, L.: Cloning and quantum computation. Phys. Rev. A 62, 022301 (2000)ADSMathSciNetGoogle Scholar
  5. 5.
    van Enk, S.J.: Relations between cloning and the universal NOT derived from conservation laws. Phys. Rev. Lett. 95, 010502 (2005)Google Scholar
  6. 6.
    Ricci, M., et al.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)ADSGoogle Scholar
  7. 7.
    Bruss, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)ADSGoogle Scholar
  8. 8.
    Fan, H., Imai, H., Matsumoto, K., Wang, X.B.: Phase-covariant quantum cloning of qudits. Phys. Rev. A 67, 022317 (2003)ADSGoogle Scholar
  9. 9.
    Navez, P., Cerf, N.J.: Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A 68, 032313 (2003)ADSGoogle Scholar
  10. 10.
    Zhang, W.H., Wu, T., Ye, L., Dai, J.L.: Optimal real state cloning in d dimensions. Phys. Rev. A 75, 044303 (2007)ADSGoogle Scholar
  11. 11.
    Niu, C.S., Griffiths, R.B.: Two-qubit copying machine for economical quantum eavesdropping. Phys. Rev. A 60, 2764 (1999)ADSMathSciNetGoogle Scholar
  12. 12.
    Fiurášek, J.: Optical implementations of the optimal phase-covariant quantum cloning machine. Phys. Rev. A 67, 052314 (2003)ADSGoogle Scholar
  13. 13.
    Buscemi, F., DAriano, G.M., Macchiavello, C.: Economical phase-covariant cloning of qudits. Phys. Rev. A 71, 042327 (2005)ADSGoogle Scholar
  14. 14.
    Durt, T., Fiurasek, J., Cerf, N.J.: Economical quantum cloning in any dimension. Phys. Rev. A 72, 052322 (2005)ADSMathSciNetGoogle Scholar
  15. 15.
    Fang, B.L., Yang, Z., Ye, L.: Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED. Phys. Rev. A 79, 054308 (2009)ADSGoogle Scholar
  16. 16.
    Fang, B.L., Song, Q.M., Ye, L.: Realization of a universal and phase-covariant quantum cloning machine in separate cavities. Phys. Rev. A 83, 042309 (2011)ADSGoogle Scholar
  17. 17.
    Černoch, A., et al.: Experimental phase-covariant cloning of polarization states of single photons. Phys. Rev. A 74, 042327 (2006)ADSGoogle Scholar
  18. 18.
    Soubusta, J., Bartuskova, L., Cernoch, A., Fiurasek, J., Dusek, M.: Several experimental realizations of symmetric phase-covariant quantum cloners of single-photon qubits. Phys. Rev. A 76, 042318 (2007)ADSGoogle Scholar
  19. 19.
    Nagali, E., DeAngelis, T., Sciarrino, F., DeMartini, F.: Experimental realization of macroscopic coherence by phase-covariant cloning of a single photon. Phys. Rev. A 76, 042126 (2007)ADSGoogle Scholar
  20. 20.
    Sabuncu, M., Andersen, U.L., Leuchs, G.: Experimental demonstration of continuous variable cloning with phase-conjugate inputs. Phys. Rev. Lett. 98, 170503 (2007)ADSGoogle Scholar
  21. 21.
    Du, J.F., et al.: Experimental quantum cloning with prior partial information. Phys. Rev. Lett. 94, 040505 (2005)ADSGoogle Scholar
  22. 22.
    Cummins, H.K., et al.: Approximate quantum cloning with nuclear magnetic resonance. Phys. Rev. Lett. 88, 187901 (2002)ADSGoogle Scholar
  23. 23.
    Chen, H.W., Zhou, X., Suter, D., Du, J.F.: Experimental realization of 1\(\rightarrow \)2 asymmetric phase-covariant quantum cloning. Phys. Rev. A 75, 012317 (2007)ADSGoogle Scholar
  24. 24.
    Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)ADSGoogle Scholar
  25. 25.
    Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243, 261 (1998)ADSMATHMathSciNetGoogle Scholar
  26. 26.
    Pati, A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849 (1999)ADSMATHMathSciNetGoogle Scholar
  27. 27.
    Qiu, D.W.: Novel cloning machine with supplementary information. J. Phys. A 39, 5135 (2006)ADSMATHMathSciNetGoogle Scholar
  28. 28.
    Azuma, K., Shimamura, J., Koashi, M., Imoto, N.: Probabilistic cloning with supplementary information. Phys. Rev. A 72, 032335 (2005)ADSGoogle Scholar
  29. 29.
    Zhang, W.H., Yu, L.B., Cao, Z.L., Ye, L.: Optimal cloning of two known nonorthogonal quantum states. Phys. Rev. A 86, 022322 (2012)ADSGoogle Scholar
  30. 30.
    Jiménez, O., Bergou, J., Delgado, A.: Probabilistic cloning of three symmetric states. Phys. Rev. A 82, 062307 (2010)ADSMathSciNetGoogle Scholar
  31. 31.
    Jiménez, O., Roa, L., Delgado, A.: Probabilistic cloning of equidistant states. Phys. Rev. A 82, 022328 (2010)ADSGoogle Scholar
  32. 32.
    Chen, H.W., et al.: Experimental demonstration of probabilistic quantum cloning. Phys. Rev. Lett. 106, 180404 (2011)ADSGoogle Scholar
  33. 33.
    Araneda, G., Cisternas, N., Jiménez, O., Delgado, A.: Nonlocal optimal probabilistic cloning of qubit states via twin photons. Phys. Rev. A 86, 052332 (2012)ADSGoogle Scholar
  34. 34.
    Raimond, J.M., et al.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMATHMathSciNetGoogle Scholar
  35. 35.
    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSGoogle Scholar
  36. 36.
    Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)ADSGoogle Scholar
  37. 37.
    Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)ADSGoogle Scholar
  38. 38.
    Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301 (2007)ADSGoogle Scholar
  39. 39.
    Xiao, Y.F., Han, Z.F., Yang, Y., Guo, G.C.: Quantum CPF gates between rare earth ions through measurement. Phys. Lett. A 330, 137 (2004)ADSGoogle Scholar
  40. 40.
    Lin, G.W., Zou, X.B., Lin, X.M., Guo, G.C.: Robust and fast geometric quantum computation with multiqubit gates in cavity QED. Phys. Rev. A 79, 064303 (2009)ADSGoogle Scholar
  41. 41.
    Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)ADSGoogle Scholar
  42. 42.
    Goto, H., Ichimura, K.: Condition for fault-tolerant quantum computation with a cavity-QED scheme. Phys. Rev. A 82, 032311 (2010)ADSGoogle Scholar
  43. 43.
    Xiong, W., Ye, L.: Optimal real state quantum cloning machine in cavity quantum electrodynamics. J. Opt. Soc. Am. B 28, 2260 (2011)ADSGoogle Scholar
  44. 44.
    Xiong, W., Wu, T., Ye, L.: Realization of nonlocal quantum gate through assisted-cavities. Int. J. Quantum Inf. 10, 1250011 (2012)Google Scholar
  45. 45.
    Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Universal unitary gate for single-photon two-qubit states. Phys. Rev. A 63, 032303 (2001)ADSGoogle Scholar
  46. 46.
    Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wen Zhang
    • 1
  • Pinshu Rui
    • 2
  • Yan Lu
    • 1
  • Qun Yang
    • 1
  • Yan Zhao
    • 3
  1. 1.Key Laboratory of Optoelectronic Information Acquisition & Manipulation of Ministry of Education of China, School of Physics & Material ScienceAnhui UniversityHefeiChina
  2. 2.Anhui Xinhua UniversityHefeiChina
  3. 3.Department of PhysicsAnhui Medical UniversityHefeiChina

Personalised recommendations