Quantum Information Processing

, Volume 14, Issue 4, pp 1343–1360 | Cite as

Quantum correlations of two qubits interacting with a macroscopic medium

  • Yan Liu
  • Jing Lu
  • Lan Zhou


We consider two particles of spin-\(1/2\) interacting with a one-dimensional \(N\)-spin array, which is an exactly solvable model. The dynamics of entanglement and quantum discord (QD) of the spins of the two particles is investigated by regarding the 1D \(N\)-spin array as the environment. It is found that although the entanglement may suffer a sudden death and a sudden birth in the evolution, it can neither be generated nor become larger than its initial value. Different from the entanglement dynamics, QD can be amplified and even be generated by the interaction between particles and the common environment. We also observe that QD decays asymptotically to zero and later experiences a rival when the average number of excitation in the 1D \(N\)-spin array becomes larger in the case of nonzero inter-distance between two particles.


Quantum correlations Quantum discord Entanglement Quantum measurement process 



This work was supported by NSFC Grants Nos. 11374095, 11422540, 11434011 and 11105050; NBRPC Grants No. 2012CB922103; Hunan Provincial Natural Science Foundation of China Grants Nos. 11JJ7001 and 12JJ1002.


  1. 1.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)CrossRefADSGoogle Scholar
  2. 2.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)CrossRefADSGoogle Scholar
  3. 3.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Zurek, W.H.: Quantum discord and Maxwells demons. Phys. Rev. A 67, 012320 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237–248 (1972)Google Scholar
  7. 7.
    Nakazato, H., Pascazio, S.: Solvable dynamical model for a quantum measurement process. Phys. Rev. Lett. 70, 1 (1993)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Nakazato, H., Pascazio, S.: Macroscopic limit of a solvable dynamical model. Phys. Rev. A 48, 1066–1081 (1993)CrossRefADSGoogle Scholar
  9. 9.
    Sun, C.P.: Quantum dynamical model for wave-function reduction in classical and macroscopic limits. Phys. Rev. A 48, 898–906 (1993)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Hiyama, K., Takagi, S.: Generalized Coleman–Hepp model and quantum coherence. Phys. Rev. A 48, 2586–2597 (1993)CrossRefADSGoogle Scholar
  11. 11.
    Nakazato, H., Namiki, M., Pascazio, S.: Exponential behavior of a quantum system in a macroscopic medium. Phys. Rev. Lett. 73, 1063–1066 (1994)CrossRefADSGoogle Scholar
  12. 12.
    Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Altintas, F., Eryigit, R.: Dissipative dynamics of quantum correlations in the strong-coupling regime. Phys. Rev. A 87, 022124 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Doustimotlagh, N., Wang, S.H., You, C.L., Long, G.L.: Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment. EPL 106, 60003 (2014)CrossRefADSGoogle Scholar
  20. 20.
    Zhang, P., You, B., Cen, L.X.: Stabilized quantum coherence and remote state preparation in structured environments. Chin. Sci. Bull. 59, 3841–3846 (2014)CrossRefGoogle Scholar
  21. 21.
    Yao, C.M., Chen, Z.H., Ma, Z.H., Severini, S., Serafini, A.: Entanglement and discord assisted entropic uncertainty relations under decoherence. Sci. China Phys. Mech. Astron. 57, 1703–1711 (2014)CrossRefADSGoogle Scholar
  22. 22.
    Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process. 12, 3421–3435 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  23. 23.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Zhang, J.S., Chen, A.X.: Review on quantum discord of bipartite and multipartite systems. Quantum Phys. Lett. 1(2), 69–77 (2012)ADSGoogle Scholar
  27. 27.
    Ma, X.S., Qiao, Y., Zhao, G.X., Wang, A.M.: Quantum discord of thermal states of a spin chain with Calogero–Moser type interaction. Sci. China Phys. Mech. Astron. 56(3), 600–605 (2013)CrossRefADSGoogle Scholar
  28. 28.
    Su, X.L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59, 1083–1090 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhou, T., Cui, J.X., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)CrossRefADSGoogle Scholar
  30. 30.
    Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  32. 32.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaChina

Personalised recommendations