Quantum Information Processing

, Volume 14, Issue 3, pp 1055–1068 | Cite as

Controlled teleportation with the control of two groups of agents via entanglement



We present a way for implementing controlled teleportation of an arbitrary unknown pure state of a qutrit with the control of two groups of agents via entanglement. In our proposal, the sender can successfully teleport the qutrit state to a distant receiver with the help of all agents. However, if one agent in each group does not cooperate, the receiver cannot gain any information (including amplitude information or phase information or both) about the qutrit state to be teleported. Since a qubit is a special case of a qutrit when the state lies in a fixed two-dimensional subspace of the qutrit, the present proposal can be also applied in the implementation of controlled teleportation of an arbitrary unknown pure state of a qubit with many control agents in two groups. We note that our proposal is the first one to use two groups of agents to achieve controlled teleportation.


Controlled teleportation Entanglement Agent Qutrit Qubit 



X.L.H. acknowledges the funding support from the Zhejiang Natural Science Foundation under Grant No. LY12A04008. C.P.Y. was supported in part by the National Natural Science Foundation of China under Grant Nos. 11074062 and 11374083, the Zhejiang Natural Science Foundation under Grant No. LZ13A040002, and the funds from Hangzhou Normal University under Grant Nos. HSQK0081 and PD13002004. This work was also supported by the funds from Hangzhou City for the Hangzhou-City Quantum Information and Quantum Optics Innovation Research Team.


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett 70, 1895 (1993)CrossRefADSMATHMathSciNetGoogle Scholar
  2. 2.
    Fujii, M.: Continuous-variable quantum teleportation with a conventional laser. Phys. Rev. A 68, 050302(R) (2003)CrossRefADSGoogle Scholar
  3. 3.
    An, N.B.: Teleportation of coherent-state superpositions within a network. Phys. Rev. A 68, 022321 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Bowen, W.P., Treps, N., Buchler, B.C., Schnabel, R., Ralph, T.C., Bachor, H.A., Symul, T., Lam, P.K.: Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Johnson, T.J., Bartlett, S.D., Sanders, B.C.: Continuous-variable quantum teleportation of entanglement. Phys. Rev. A 66, 042326 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Fang, J., Lin, Y., Zhu, S., Chen, X.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67, 014305 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Son, W., Lee, J., Kim, M.S., Park, Y.J.: Conclusive teleportation of a d-dimensional unknown state. Phys. Rev. A 64, 064304 (2001)CrossRefADSGoogle Scholar
  8. 8.
    Galvao, E.F., Hardy, L.: Building multiparticle states with teleportation. Phys. Rev. A 62, 012309 (2000)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Yang, C.P., Guo, G.C.: A Proposal of teleportation for three-particle entangled state. Chin. Phys. Lett. 16, 628 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Gordon, G., Rigolin, G.: Generalized teleportation protocol. Phys. Rev. A 73, 042309 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Bouwmeester, D., Pan, J.W., Mattle, Kl, Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)CrossRefADSGoogle Scholar
  13. 13.
    Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., Furusawa, A.: Teleportation of nonclassical wave packets of light. Science 332, 330 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature (London) 396, 52 (1998)CrossRefADSGoogle Scholar
  15. 15.
    Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature (London) 429, 737 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Wei Pan, J.: Experimental free-space quantum teleportation. Nat. Photonics 87, 376 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature (London) 488, 185 (2012)Google Scholar
  19. 19.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)CrossRefADSGoogle Scholar
  26. 26.
    Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-Party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)CrossRefADSGoogle Scholar
  29. 29.
    Yang, C.P., Han, S.: A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network. Phys. Lett. A 343, 267 (2005)CrossRefADSMATHGoogle Scholar
  30. 30.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)CrossRefADSGoogle Scholar
  32. 32.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger–Horne–Zeilinger States. Chin. Phys. Lett. 24, 1151 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state. Int. J. Theor. Phys. 49, 1976 (2010)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states. Chin. Phys. 54(12), 2208 (2011)Google Scholar
  35. 35.
    Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20, 040307 (2011)CrossRefADSGoogle Scholar
  36. 36.
    Guo, Z.Y., Shang, X.X., Fang, J.X., Xiao, R.H.: Controlled teleportation of an arbitrary two-particle state by one EPR pair and cluster state. Commun. Theor. Phys. 56, 819 (2011)CrossRefADSMATHGoogle Scholar
  37. 37.
    Li, Z., Long, L.R., Zhou, P., Yin, C.L.: Probabilistic multiparty-controlled teleportation of an arbitrary m-qubit state with a pure entangled quantum channel against collective noise. Sci. China Phys. 55, 2445 (2012)CrossRefGoogle Scholar
  38. 38.
    Han, L.F., Xu, H.F.: Probabilistic and controlled teleportation of an arbitrary two-qubit state via one dimensional five-qubit cluster-class state. Int. J. Theor. Phys. 51, 2540 (2012)CrossRefMATHGoogle Scholar
  39. 39.
    Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)CrossRefMATHGoogle Scholar
  41. 41.
    Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Construction of general quantum channel for quantum teleportation. Quantum Inf. Process. 12, 2803 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  42. 42.
    Zhan, Y.B.: Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement. Chin. Phys. B 16, 2557 (2008)Google Scholar
  43. 43.
    Cao, H.J., Chen, Z.H., Song, H.S.: Controlled teleportation of a 3-dimensional bipartite quantum state. Phys. Scr. 78, 015002 (2008)CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Teleportation of the three-level three-particle entangled state and classical communication cost. Phys. A 387, 3811 (2008)CrossRefGoogle Scholar
  45. 45.
    Shi, J., Zhan, Y.B.: Controlled probabilistic teleportation of an unknown multi-particle high-dimensional entangled state. Commun. Theor. Phys. 51, 1027 (2009)CrossRefADSMATHMathSciNetGoogle Scholar
  46. 46.
    Zhang, Z.Y., Sun, Q.: Realization of superposition and entanglement of coherent and squeezed states in circuit quantum electrodynamics. Sci. China Phys. Mech. Astron. 54, 1476 (2011)CrossRefADSGoogle Scholar
  47. 47.
    Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39, 1975 (2006)CrossRefADSGoogle Scholar
  48. 48.
    Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A Math. Theor. 40, 13121 (2007)CrossRefADSMATHMathSciNetGoogle Scholar
  49. 49.
    Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 49, 129 (2008)CrossRefADSGoogle Scholar
  50. 50.
    Xia, Y., Song, J., Song, H.S., Wang, B.Y.: Generalized Teleportation of a d-Level N-Particle GHZ State with one pair of entangled particles as the quantum channel. Int. J. Theor. Phys. 47, 2835 (2008)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Wang, J., Hou, K., Yuan, H., Shi, S.H.: An efficient scheme for generalized tripartite controlled teleportation of a two-qubit entangled state. Phys. Scr. 80, 015004 (2009)CrossRefADSGoogle Scholar
  52. 52.
    Zuo, X.Q., Liu, Y.M., Xu, C.J., Zhang, Z.Y., Zhang, Z.J.: Generalized tripartite scheme for sharing arbitrary 2n-qudit state. Opt. Commun. 283, 4108 (2010)CrossRefADSGoogle Scholar
  53. 53.
    Long, L.R., Li, H.W., Zhou, Pi, Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N+2)-particle nonmaximally entangled state as the quantum channel. Sci. China Phys. Mech. Astron. 54, 484 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of ScienceZhejiang University of Science and TechnologyHangzhouChina
  2. 2.Department of PhysicsHangzhou Normal UniversityHangzhouChina

Personalised recommendations