Quantum Information Processing

, Volume 14, Issue 2, pp 635–651 | Cite as

Protecting single-photon entanglement with imperfect single-photon source

  • Yang Ou-Yang
  • Zhao-Feng Feng
  • Lan Zhou
  • Yu-Bo Sheng


Photon noiseless linear amplification (NLA) is a powerful way to protect the single photon or single-photon entanglement (SPE) from photon loss. However, current NLA protocols for single photon or SPE usually require the local auxiliary single photon, but the ideal single-photon source is unavailable in current technology. In this paper, we investigate the NLA protocols for both single photon and SPE with imperfect single-photon source. We show that the quality of amplified quantum state greatly depends on the imperfect single-photon sources. The upper bound of the fidelity of the amplified quantum state is the fidelity of the single-photon source. In this way, in order to realize the amplification, we should require the fidelity of the single-photon source to be greater than the fidelity of the initial degraded state.


Quantum communication Noiseless linear amplification   Single-photon entanglement 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project in Jiangsu Province, the 1311 Talent Plan in NJUPT, and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.


  1. 1.
    Nielsen, M.A., Chuang, L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  8. 8.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bennett, C.H.: Quantum cryptography using 2 nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bennett, C.H., Wiesner, S.J.: Communication via one-particle and 2-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Duan, L.M., Lukin, M.D., Cirac, J.T., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference on Quantum Commmunication Measurement and Computing (AIP 2009), pp. 155–160Google Scholar
  13. 13.
    Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)CrossRefGoogle Scholar
  15. 15.
    Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012)CrossRefGoogle Scholar
  16. 16.
    Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with application to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)Google Scholar
  18. 18.
    Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Zhou, L., Sheng, Y.B.: Distilling single-photon entanglement from photon loss and decoherence. J. Opt. Soc. Am. B 30, 2737 (2013)Google Scholar
  22. 22.
    Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Tan, S.M., Walls, D.F., Collett, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    van Enk, J.: Single-particle entanglement. Phys. Rev. A 72, 064306 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Hardy, L.: Nonlocality of a single photon revisited. Phys. Rev. Lett. 73, 2279 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010)MATHMathSciNetGoogle Scholar
  29. 29.
    Zhou, L., Sheng, B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Heaney, L., Cabello, A., Santos, M.F., Vedral, V.: Extreme nonlocality with one photon. New J. Phys. 13, 053054 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Gottesman, D., Jennewein, T., Croke, S.: Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yang Ou-Yang
    • 1
    • 2
  • Zhao-Feng Feng
    • 1
    • 2
  • Lan Zhou
    • 2
    • 3
  • Yu-Bo Sheng
    • 1
    • 2
  1. 1.Institute of Signal Processing TransmissionNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of EducationNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.College of Mathematics and PhysicsNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations