Skip to main content
Log in

Protecting single-photon entanglement with imperfect single-photon source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Photon noiseless linear amplification (NLA) is a powerful way to protect the single photon or single-photon entanglement (SPE) from photon loss. However, current NLA protocols for single photon or SPE usually require the local auxiliary single photon, but the ideal single-photon source is unavailable in current technology. In this paper, we investigate the NLA protocols for both single photon and SPE with imperfect single-photon source. We show that the quality of amplified quantum state greatly depends on the imperfect single-photon sources. The upper bound of the fidelity of the amplified quantum state is the fidelity of the single-photon source. In this way, in order to realize the amplification, we should require the fidelity of the single-photon source to be greater than the fidelity of the initial degraded state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  5. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  8. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bennett, C.H.: Quantum cryptography using 2 nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bennett, C.H., Wiesner, S.J.: Communication via one-particle and 2-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Duan, L.M., Lukin, M.D., Cirac, J.T., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  12. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference on Quantum Commmunication Measurement and Computing (AIP 2009), pp. 155–160

  13. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  14. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)

    Article  Google Scholar 

  15. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012)

    Article  Google Scholar 

  16. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011)

    Article  ADS  Google Scholar 

  17. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with application to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

  18. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  19. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  20. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  21. Zhou, L., Sheng, Y.B.: Distilling single-photon entanglement from photon loss and decoherence. J. Opt. Soc. Am. B 30, 2737 (2013)

  22. Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Tan, S.M., Walls, D.F., Collett, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252 (1991)

    Article  ADS  Google Scholar 

  24. van Enk, J.: Single-particle entanglement. Phys. Rev. A 72, 064306 (2005)

    Article  ADS  Google Scholar 

  25. Hardy, L.: Nonlocality of a single photon revisited. Phys. Rev. Lett. 73, 2279 (1994)

    Article  ADS  Google Scholar 

  26. Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  27. Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Zhou, L., Sheng, B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014)

    Article  ADS  Google Scholar 

  30. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764 (2009)

    Article  ADS  Google Scholar 

  32. Heaney, L., Cabello, A., Santos, M.F., Vedral, V.: Extreme nonlocality with one photon. New J. Phys. 13, 053054 (2011)

    Article  ADS  Google Scholar 

  33. Gottesman, D., Jennewein, T., Croke, S.: Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012)

    Article  ADS  Google Scholar 

  34. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)

    Article  ADS  Google Scholar 

  35. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  36. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project in Jiangsu Province, the 1311 Talent Plan in NJUPT, and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou-Yang, Y., Feng, ZF., Zhou, L. et al. Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf Process 14, 635–651 (2015). https://doi.org/10.1007/s11128-014-0886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0886-8

Keywords

Navigation