Advertisement

Quantum Information Processing

, Volume 14, Issue 5, pp 1647–1673 | Cite as

Quantum Boolean image denoising

  • Mario Mastriani
Article

Abstract

A quantum Boolean image processing methodology is presented in this work, with special emphasis in image denoising. A new approach for internal image representation is outlined together with two new interfaces: classical to quantum and quantum to classical. The new quantum Boolean image denoising called quantum Boolean mean filter works with computational basis states (CBS), exclusively. To achieve this, we first decompose the image into its three color components, i.e., red, green and blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e., 8 bitplanes per color. From now on, we will work with the bitplane corresponding to the most significant bit (MSB) of each color, exclusive manner. After a classical-to-quantum interface (which includes a classical inverter), we have a quantum Boolean version of the image within the quantum machine. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too. After filtering of the inverted version of MSB (inside quantum machine), the result passes through a quantum-classical interface (which involves another classical inverter) and then proceeds to reassemble each color component and finally the ending filtered image. Finally, we discuss the more appropriate metrics for image denoising in a set of experimental results.

Keywords

Quantum algorithms Quantum Boolean image denoising   Quantum/classical interfaces Quantum measurement 

Notes

Acknowledgments

M. Mastriani thanks Prof. Dr. Salvador E. Venegas-Andraca, Assistant Professor of Mathematics and Computer Science from Monterrey Institute of Technology-State of Mexico Campus for being the creator of this discipline, by share it—so selflessly—with all humanity, and for his tremendous help and support. Besides, I wish to thank all the technical staff of the various laboratories of the National Commission of Atomic Energy for the help they gave me in the preparation of experiments. It is impossible to name them all here, simply, thank you all for all.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)Google Scholar
  2. 2.
    Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)CrossRefADSMATHMathSciNetGoogle Scholar
  3. 3.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)CrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum Turing machine. Proc. R. Soc. Lond. A400, 97–117 (1985)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A439, 553–558 (1992)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Simon, D.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5):1484–1509 (1997). quant-ph/9508027
  10. 10.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21, 120–126 (1978)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science. Volume A: Algorithms and Complexity. MIT Press, Cambridge (1990)Google Scholar
  12. 12.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  13. 13.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011). doi: 10.1007/s11128-010-0177-y CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall Inc., Englewood Cliffs, NJ (1989)Google Scholar
  15. 15.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  16. 16.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar
  17. 17.
    Schalkoff, R.J.: Digital Image Processing and Computer Vision. Wiley, New York (1989)Google Scholar
  18. 18.
    Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. quantph/0402085 (2003)
  19. 19.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003). doi: 10.1117/12.485960 ADSGoogle Scholar
  20. 20.
    Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)Google Scholar
  21. 21.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Venegas-Andraca, S.E.: DPhil Thesis: Discrete Quantum Walks and Quantum Image Processing. Centre for Quantum Computation, University of Oxford (2006)Google Scholar
  23. 23.
    Latorre, J.I.: Image compression and entanglement (2005). arXiv:quant-ph/0510031
  24. 24.
    Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2004)Google Scholar
  25. 25.
    Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)Google Scholar
  26. 26.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-making. J. Math. Psychol. 50, 220–241 (2006). doi: 10.1016/j.jmp.2006.01.003 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    MATLAB\(^{\textregistered }\) R2014a (Mathworks, Natick, MA). http://www.mathworks.com/
  28. 28.
    Mastriani, M.: Systholic Boolean orthonormalizer network in wavelet domain for microarray denoising. Int. J. Signal Process. 2(4), 273–284 (2006). https://www.waset.org/author/mario-mastriani
  29. 29.
    Eldar, Y.C.: Quantum Signal Processing. Doctoral Thesis, Massachusetts Institute of Technology (2001)Google Scholar
  30. 30.
    Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Process. Mag. 19, 12–32 (2002)CrossRefADSGoogle Scholar
  31. 31.
    Mastriani, M., Giraldez, A.: Enhanced directional smoothing algorithm for edge-preserving smoothing of synthetic-aperture radar images. J. Meas. Sci. Rev. 4(3), 1–11 (2004)Google Scholar
  32. 32.
    Mastriani, M., Giraldez, A.: Smoothing of coefficients in wavelet domain for speckle reduction in synthetic aperture radar images. ICGST Int. J. Graph. Vis. Image Process. (GVIP) 6, 1–8 (2005)Google Scholar
  33. 33.
    Mastriani, M., Giraldez, A.: Despeckling of SAR images in wavelet domain. GIS Dev. Mag. 9(9), 38–40 (2005)Google Scholar
  34. 34.
    Mastriani, M.: Optimal estimation of states in quantum image processing (2014). arXiv:1406.5121 [quant-ph]
  35. 35.
    Zurek, W.H.: Decoherence and the transition from quantum to classical-revisited (2003). arXiv:quant-ph/0306072v1
  36. 36.
    Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube (2005). quant-ph/0501169
  37. 37.
    Dass, T.: Measurements and decoherence (2005). arXiv:quant-ph/0505070v1
  38. 38.
    Kendon, V., Tregenna, B.: Decoherence in a quantum walk on the line. In: Proceedings of QCMC 2002 (2002)Google Scholar
  39. 39.
    Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)CrossRefADSGoogle Scholar
  40. 40.
    Kendon, V., Tregenna, B.: Decoherence in discrete quantum walks. Selected lectures from DICE 2002. Lect. Notes Phys. 633, 253–267 (2003)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Phys. A 347c, 137–152 (2005)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    DiVincenzo, D.P.: The physical implementation of quantum computation (2008). arXiv:quant-ph/0002077v3
  43. 43.
    DiVincenzo, D.P.: Quantum computation. Sci. New Ser. 270(5234), 255–261 (1995)MATHMathSciNetGoogle Scholar
  44. 44.
    Miano, J.: Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Addison-Wesley, New York (1999)Google Scholar
  45. 45.
    Wheeler, N.: Problems at the quantum/classical interface (2001). http://ebookily.org/pdf/problems-at-the-quantum-classical-interface-174658500.html
  46. 46.
    Baylis, W.E.: Quantum/classical interface: a geometric approach from the classical side. In: Computational Noncommutative Algebra and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 136, pp. 127–154 (2004)Google Scholar
  47. 47.
    Baylis, W.E., Cabrera, R., Keselica, D.: Quantum/classical interface: fermion spin (2007). arXiv:0710.3144v2
  48. 48.
    Svozil, K.: Quantum Interfaces. CDMTCS Research Report Series, Technische Universitat Wien, Austria, CDMTCS-136 (2000)Google Scholar
  49. 49.
    Landsman, N.P.: Between classical and quantum (2005). arXiv:quant-ph/0506082v2
  50. 50.
    Zhou, X., Bocko, M.F., Feldman, M.J.: Isolation Structures for the Solid-State Quantum-to-Classical Interface. Presented at International Conference on Quantum Information, March 2001, Rochester, NY (2001)Google Scholar
  51. 51.
    Mastriani, M.: Quantum Edge Detection for Image Segmentation in Optical Environments (2014). arXiv:1409.2918 [cs.CV]
  52. 52.
    NVIDIA\({\textregistered }\) Tesla\({\copyright }\) 2050 GPU. http://www.nvidia.com/
  53. 53.
    QLogic\({\textregistered }\) QDR Infiniband. http://www.qlogic.com/

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.DLQS LLCCoconut CreekUSA

Personalised recommendations