Quantum Information Processing

, Volume 14, Issue 2, pp 697–713 | Cite as

A hybrid quantum key distribution protocol based on extended unitary operations and fountain codes

  • Hong Lai
  • Liyin Xue
  • Mehmet A. Orgun
  • Jinghua Xiao
  • Josef Pieprzyk


In 1984, Bennett and Brassard designed the first quantum key distribution protocol, whose security is based on quantum indeterminacy. Since then, there has been growing research activities, aiming in designing new, more efficient and secure key distribution protocols. The work presents a novel hybrid quantum key distribution protocol. The key distribution is derived from both quantum and classical data. This is why it is called hybrid. The protocol applies extended unitary operations derived from four basic unitary operations and distributed fountain codes. Compared to other protocols published so far, the new one is more secure (provides authentication of parties and detection of eavesdropping) and efficient. Moreover, our protocol still works over noisy and lossy channels.


Extended unitary operations Fountain codes Eavesdropping detection Authentication EPR pairs Key distribution protocols 



The authors are grateful to the two anonymous reviewers for their valuable comments and suggestions to improve the presentation of this paper. Also, they would like to thank Prof. Gao Fei from Beijing University of Posts and Telecommunications for helping them to improve this paper. Hong Lai has been supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES). Josef Pieprzyk was supported by Australian Research Council grant DP0987734. This work is also supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB923200), the National Natural Science Foundation of China (No. 61377067). The work is also supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China.


  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20–22. IEEE Computer Society Press, pp. 124–134 (1994)Google Scholar
  2. 2.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179. IEEE, New York (1984)Google Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Zhang, Y., Li, C., Guo, G.: Comment on ‘Quantum key distribution without alternative measurements’. Phys. Rev. A. 63, 036301 (2001)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239–1241 (1995)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031–1038 (2007)CrossRefGoogle Scholar
  8. 8.
    Inoue, K.: Quantum key distribution technologies. IEEE J. Sel. Top. Quantum Electron. 12, 888–896 (2006)CrossRefGoogle Scholar
  9. 9.
    Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A. 87, 032312 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: A quantum key distribution and identification protocol based on entanglement swapping. arXiv:quant-ph/0412014v1 2 Dec 2004.
  11. 11.
    Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A. 65, 032302–32305 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A. 87, 012331 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Maeda, W., Tanaka, A., Takahashi, S., Tajima, A., Tomita, A.: Technologies for quantum key distribution networks integrated with optical communication networks. IEEE J. Sel. Top. Quantum Electron. 16, 1591–1601 (2009)CrossRefGoogle Scholar
  14. 14.
    Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622–1629 (2009)CrossRefGoogle Scholar
  15. 15.
    Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quantum Electron. 15, 1630–1645 (2009)CrossRefGoogle Scholar
  16. 16.
    Simon, D.S., Sergienko, A.V.: High capacity quantum key distribution via hyper-entangled degrees of freedom. New J. Phys. 16, 063052 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Duligall, J.L., Godfrey, M.S., Harrison, K.A., Munro, W.J., Rarity, J.G.: Low cost and compact quantum key distribution. New J. Phys. 8, 249–265 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Duligall, J.L., Godfrey, M.S., Lynch, A., Munro, W.J., Harrison, K.A., Rarity, J.G.: Low cost quantum secret key growing for consumer transactions. In: Proceedings of the International Quantum Electronics Conference, pp. 4387012–4387012 (2007)Google Scholar
  19. 19.
    Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)CrossRefGoogle Scholar
  20. 20.
    Gao, F., Qin, S., Guo, F., Wen, Q.Y.: Dense-coding attack on three party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Byers, J.W., Luby, M., Mitzenmacher, M., Rege A.: A digital fountain approach to reliable distribution of bulk data. In: Steenstrup, Martha (ed.) In: Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’98), pp. 56–67. ACM, New York, NY, USA,Google Scholar
  22. 22.
    Lai, H., Xiao, J.H., Orgun, M.A., Xue, L.Y., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf Process. 13, 895–907 (2014)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Lin, Y., Liang, B., Li, B.: Data persistence in large-scale sensor networks with decentralized fountain codes. In: INFOCOM 2007. In: 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 6–12 May 2007, Anchorage, Alaska, USA. pp. 1658–1666, IEEE (2007)Google Scholar
  24. 24.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 41–48 (2005)MathSciNetGoogle Scholar
  27. 27.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojanhorse attacks on quantum-key-distribution systems. Phys. Rev. A. 73, 022320 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503–100507 (2007)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum inf. Comput. 4(5), 325–360 (2004)MATHMathSciNetGoogle Scholar
  30. 30.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J.H., Takeoka, M., Wilde, M.M.: Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014). arXiv:1307.0380 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hong Lai
    • 1
    • 2
  • Liyin Xue
    • 3
  • Mehmet A. Orgun
    • 2
  • Jinghua Xiao
    • 1
  • Josef Pieprzyk
    • 4
  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia
  3. 3.Corporate AnalyticsThe Australian Taxation OfficeSydneyAustralia
  4. 4.School of Electrical Engineering and Computer ScienceQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations