Quantum Information Processing

, Volume 13, Issue 12, pp 2587–2594 | Cite as

Novel multiparty quantum key agreement protocol with GHZ states



In many circumstances, a shared key is needed to realize secure communication. Based on quantum mechanics principles, quantum key agreement (QKA) is a good method to establish a shared key by every party’s fair participation. In this paper, we propose a novel three-party QKA protocol, which is designed by using Greenberger–Horne–Zeilinger (GHZ) states. To realize the protocol, the distributor of the GHZ states needs only one quantum communication with the other two parties, respectively, and everyone performs single-particle measurements simply. Then, we extend the three-party QKA protocol to arbitrary multiparty situation. At last, we discuss the security and fairness of the multiparty protocol. It shows that the new scheme is secure and fair to every participant.


Quantum key agreement GHZ state Single-particle measurement 



This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061 and 61201431), Beijing Natural Science Foundation (Grant No. 4122054) and Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475 and YETP0477).


  1. 1.
    Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)CrossRefGoogle Scholar
  4. 4.
    Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)CrossRefGoogle Scholar
  6. 6.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)Google Scholar
  8. 8.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pairblock. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)CrossRefADSMATHGoogle Scholar
  10. 10.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53 (2006)CrossRefADSMATHGoogle Scholar
  11. 11.
    Long, G.L., Liu, X.S.: Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horn-Zeilinger state. Opt. Commun. 283, 192–195 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phy. Rev. A 78, 064304 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. commun. 284, 3160–3163 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., et al.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302 (2009)CrossRefGoogle Scholar
  20. 20.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)CrossRefADSGoogle Scholar
  21. 21.
    Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Lee, H., Hong, C.H., Kim, H., et al.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. A 321, 295–300 (2004)MathSciNetMATHGoogle Scholar
  23. 23.
    Wen, X.J., Niu, X.M., Ji, L.P.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307–060311 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Wen, X.J., Tian, Y., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001–055006 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13, 491–502 (2014)CrossRefMATHGoogle Scholar
  27. 27.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRefGoogle Scholar
  28. 28.
    Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)Google Scholar
  29. 29.
    Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hsuch, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242. Nation Taiwan University of Science and Technology, Taipei, Taiwan, 10–11 June (2004).Google Scholar
  31. 31.
    Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference, pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010).Google Scholar
  32. 32.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  33. 33.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  34. 34.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and Single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)Google Scholar
  35. 35.
    Nguyen, B.A.: Quantum exam. Phys. Lett. A 350, 174 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”[Phys. Lett. A, 2006, (350):174]. Phys. Lett. A 360, 748–750 (2007)CrossRefADSGoogle Scholar
  37. 37.
    Song, J., Zhang, S.: Comment on: “Quantum exam”[Phys. Lett. A, 2006, (350): 174]. Phys. Lett. A 360, 746–747 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guang-Bao Xu
    • 1
    • 2
  • Qiao-Yan Wen
    • 1
  • Fei Gao
    • 1
  • Su-Juan Qin
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.College of Mathematics and Systems ScienceShanDong University of Science and TechnologyQingdaoChina

Personalised recommendations