Skip to main content
Log in

Novel multiparty quantum key agreement protocol with GHZ states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In many circumstances, a shared key is needed to realize secure communication. Based on quantum mechanics principles, quantum key agreement (QKA) is a good method to establish a shared key by every party’s fair participation. In this paper, we propose a novel three-party QKA protocol, which is designed by using Greenberger–Horne–Zeilinger (GHZ) states. To realize the protocol, the distributor of the GHZ states needs only one quantum communication with the other two parties, respectively, and everyone performs single-particle measurements simply. Then, we extend the three-party QKA protocol to arbitrary multiparty situation. At last, we discuss the security and fairness of the multiparty protocol. It shows that the new scheme is secure and fair to every participant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  Google Scholar 

  4. Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)

    Article  Google Scholar 

  5. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)

    Article  Google Scholar 

  6. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  7. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)

    Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pairblock. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Long, G.L., Liu, X.S.: Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  12. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  14. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horn-Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  15. Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phy. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)

    Article  MathSciNet  Google Scholar 

  18. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  19. Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., et al.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302 (2009)

    Article  Google Scholar 

  20. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  21. Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  22. Lee, H., Hong, C.H., Kim, H., et al.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. A 321, 295–300 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Wen, X.J., Niu, X.M., Ji, L.P.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)

    Article  ADS  Google Scholar 

  24. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307–060311 (2010)

    Article  ADS  Google Scholar 

  25. Wen, X.J., Tian, Y., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001–055006 (2010)

    Article  ADS  Google Scholar 

  26. Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13, 491–502 (2014)

    Article  MATH  Google Scholar 

  27. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  28. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

    Google Scholar 

  29. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hsuch, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242. Nation Taiwan University of Science and Technology, Taipei, Taiwan, 10–11 June (2004).

  31. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference, pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010).

  32. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and Single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

  35. Nguyen, B.A.: Quantum exam. Phys. Lett. A 350, 174 (2006)

    Article  ADS  Google Scholar 

  36. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”[Phys. Lett. A, 2006, (350):174]. Phys. Lett. A 360, 748–750 (2007)

    Article  ADS  Google Scholar 

  37. Song, J., Zhang, S.: Comment on: “Quantum exam”[Phys. Lett. A, 2006, (350): 174]. Phys. Lett. A 360, 746–747 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061 and 61201431), Beijing Natural Science Foundation (Grant No. 4122054) and Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475 and YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GB., Wen, QY., Gao, F. et al. Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf Process 13, 2587–2594 (2014). https://doi.org/10.1007/s11128-014-0816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0816-9

Keywords

Navigation