Advertisement

Quantum Information Processing

, Volume 13, Issue 10, pp 2325–2342 | Cite as

Analysis of counterfactual quantum key distribution using error-correcting theory

  • Yan-Bing Li
Article

Abstract

Counterfactual quantum key distribution is an interesting direction in quantum cryptography and has been realized by some researchers. However, it has been pointed that its insecure in information theory when it is used over a high lossy channel. In this paper, we retry its security from a error-correcting theory point of view. The analysis indicates that the security flaw comes from the reason that the error rate in the users’ raw key pair is as high as that under the Eve’s attack when the loss rate exceeds 50 %.

Keywords

Quantum key distribution Counterfactual Error correcting 

Notes

Acknowledgments

We are very grateful to Professor Horace P. Yuen for encouragement. This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061, 61370188, and 61103210), Beijing Natural Science Foundation (Grant No. 4122054), and Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477), China scholarship council.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984)Google Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  3. 3.
    Yuen, H.P.: In: Tombesi, P., Hirota, O. (eds.) Proceedings of QCMC00, Capri, 2001. Plenum Press, New York (2001)Google Scholar
  4. 4.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)CrossRefADSGoogle Scholar
  7. 7.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F., Guo, G.C.: Security of counterfactual quantum cryptography. Phy. Rev. A 82, 042335 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Sun, Y., Wen, Q.Y.: Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 82, 052318 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Zhang, S., Wang, J., Tang, C.J.: Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability. Chin. Phys. B 21, 060303 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Yin, Z.Q., Li, H.W., Yao, Y., Zhang, C.M., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 86, 022313 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Liu, Y., Ju, L., Liang, X.L., Tang, S.B., Shen Tu, G.L., Zhou, L., Peng, C.Z., Chen, K., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Li, Y.B., Wen, Q.Y., Li, Z.C.: Security flaw of counterfactual quantum cryptography in practical setting. arXiv:1312.1436v5
  20. 20.
    Renner, R.: Ph.D. thesis, ETH Zürich (2005)Google Scholar
  21. 21.
    Van Assche, G.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  22. 22.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1345 (2009)CrossRefADSGoogle Scholar
  23. 23.
    Abruzzo, S., Bratzik, S., Bernardes, N.K., Kampermann, H., vanLoock, P., Bruß, D.: Quantum repeaters and quantum key distribution: analysis of secret-key rates. Phys. Rev. A 87, 052315 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Ryan, W.E., Lin, S.: Channel Codes. Cambridge Univ. Pres, Cambridge (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Lütkenhaus, N.: Estimates for practical quantum cryptography. Phys. Rev. Lett. 59, 3301 (1999)Google Scholar
  26. 26.
    Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Yuen, H.P.: Problems of Security Proofs and Fundamental Limit on Key Generation Rate in Quantum Key Distribution. arXiv:1205.3820v2

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Beijing Electronic Science and Technology InstituteBeijingChina
  3. 3.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations